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Abstract—This paper analyzes the characteristics of sequences
generated using cascade chaotic maps employing two or three
seed maps. We begin by comparing their Lyapunov exponents
and also propose a new conjecture for the Lyapunov exponent of
a cascade chaotic map using three seed maps. Furthermore, their
real-valued output sequences are translated into binary sequences
using two distinct binary mapping methods. Subsequently, we
compare the correlation and balance properties of each converted
binary sequence, and show the results of statistically validating
these sequences by NIST SP 800-22.

Index Terms—DSSS, PN code, Chaotic map, Lyapunov expo-
nent

I. INTRODUCTION

In general, a chaos means a state of disorder. These terms
are frequently used in dynamic systems and were defined
by R. L. Devaney [2], [6]. The chaotic map is a nonlinear
function characterized by its sensitivity to initial values, where
even slight differences in initial values can lead to completely
distinct outcomes. Due to this characteristic, it becomes pos-
sible to easily generate infinitely different sequences solely by
varying the initial values.

The PN codes used in conventional Direct Sequence Spread
Spectrum (DSSS) systems have the fixed period, which limits
the size of the sequence set. On the other hand,, sequences
generated by chaotic maps can produce an infinite number
of non-periodic signals with strong correlation characteristics,
solely based on differences in initial values. Therefore, the use
of chaotic sequences in existing DSSS systems employing PN
codes has been studied [3], [8]–[10].

Directly proving the chaotic performance of chaotic map is
a highly challenging task. Lyapunov Exponents (LE) can be
utilized to explain the chaotic behavior of a chaotic system,
as they provide a quantitative description of the variation
between two adjacent output values in a dynamic system [7],
[15]. The application of one-dimensional traditional chaotic
maps in more secure communications has been a subject of
extensive research, driven by the relatively small parameter
space and low LEs. Efforts have been made to enhance the LE

Fig. 1. The first and second rows are bifurcation diagrams and Lyapunov
exponents of (a) logistic map, (b) Chebyshev map, and (c) sine map.

for improved security communication purposes [1], [7], [11],
[14], [15]. In [7] and [15], the authors proposed a Cascade
Caotic system with better chaotic behavior than single maps.

In [7] and [15], a cascade chaotic system (CCS) with
better chaotic behavior than one-dimensional maps using two
seed maps was introduced. By combining two existing one-
dimensional chaotic maps, a new one-dimensional chaotic
map can be generated. In [7], LE is employed for analyzing
the chaotic performance of a CCS using two seed maps.
Ultimately, it conclude that the combination of the LE values
of the two seed maps was established for the case of a CCS
employing two seed maps.

In this paper, we further extend our consideration to a
CCS employing three seed maps. Furthermore, we compare
the binary sequences generated by the pseudorandom number
generators (PRNGs) proposed in [7] with the binary sequences
generated by the Threshold method.

In Section II, we introduces some traditional chaotic maps.
In Section III, we introduce CCS. In Section IV, we analyze
the properties of binary sequences generated by two binary
mapping schemes. Section V concludes the paper with some
concluding remarks.
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Fig. 2. g(x), h(x) and f(x) are chaotic seed maps. (a) and (b) are the
structure of CCS applied with two and three seed maps, respectively.

II. TRADITIONAL CHAOTIC MAPS

In this section, we briefly review the three chaotic maps.
The three maps under consideration here will be employed as
seed maps for the CCS.

A. Logistic map

The Logistic map, which is widely used as a discrete chaotic
map, was first introduced as a statistical model in [12]. The
Logistic map is defined

xn+1 = µxn(1− xn), (1)

where 0 ≤ µ ≤ 4, xn ∈ [0, 1], and xn+1 is the iterative result.
When the fractal parameter µ ∈ [3.57, 4], the Logistic map
is in chaotic state. Figure 1(a) shows the Lyapunov exponent
and bifurcation diagram of the Logistic map.

B. Chebyshev map

The Chebyshev map, initially investigated in [4], is a chaos
map developed in the form of Chebyshev polynomials. The
Chebyshev map is defined

xn+1 = cos(u · cos−1(xn)), (2)

where 0 ≤ u ≤ 4, xn ∈ [−1, 1], and xn+1 is the iterative
result. When the fractal parameter u ≥ 2, the Chebyshev map
is in chaotic state. Figure 1(b) shows the Lyapunov exponent
and bifurcation diagram of the Chebyshev map.

C. Sine map

The sine map is an traditional chaotic map displaying
chaotic behaviors, and it shares a strong resemblance to the
logistic map [5]. The Sine map is defined

xn+1 = r · sin(π · xn), (3)

where 0 ≤ r ≤ 1, xn ∈ [0, 1], and xn+1 is the iterative result.
When the fractal parameter u ∈ [0.867, 1], the Sine map is in
chaotic state. Figure 1(c) shows the Lyapunov exponent and
bifurcation diagram of the Sine map.

III. CASCADE CHAOTIC MAPS

In [7] and [15], a CCS using two seed maps was introduced.
As illustrated in Figure 2(a), by combining two existing one-
dimensional chaotic maps, a new one-dimensional chaotic map
can be generated. The output of function g(x) is utilized as
the input for function f(x), and subsequently, the output of
function f(x) is fed back as the input for function g(x) for
recursive iterations. Mathematically, the CCS using two seed
maps is defined in the following:

xn+1 = Γ(xn) = f(g(xn)). (4)

Fig. 3. The left columns of (a), (b), and (c) show the bifurcation diagrams
of the Triple-Logistic map, Triple-Chebyshev map, and Logistic-Sine-Logistic
map, respectively. The second column is the LE of CCS.

In this paper, we further extend our consideration to a CCS
employing three seed maps, as depicted in Figure 2(b). In a
similar manner to the case where two seed maps are employed,
the CCS using three seed maps is defined as follows:

xn+1 = Γ(xn) = f(g(h(xn))). (5)

Existing one-dimensional chaotic maps can serve as seed
maps for the CCS. Users have the flexibility to configure the
seed maps f(x), g(x), and h(x) as identical or distinct chaotic
maps.

A. Lyapunov Exponent

In [7] and [15], LE is employed for analyzing the chaotic
performance of a CCS using two seed maps. Ultimately, it
conclude that the combination of the LE values of the two
seed maps was established for the case of a CCS employing
two seed maps, as follows:

λΓ(x) = λf(x) + λg(x), (6)

where λf(x) and λg(x) are LEs for f(x) and g(x), respectively.
In this paper, we further extend our consideration to a

CCS employing three seed maps, as depicted in Figure 2(b).
We hereby examine the following six CCS: the Double-
Logistic map, Triple-Logistic map, Double-Chebyshev map,
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TABLE I
CORRELATION PROPERTIES FOR BINARY CHAOTIC SEQUENCES AND M-SEQUENCE

Classification

Length: 10000 Length: 100000

Initial value: 0.4001− 0.4100 Initial value: 0.4001− 0.4100

Normalized Auto-correlation Normalized Cross-correlation Normalized Auto-correlation Normalized Cross-correlation

Average Average Average Max Average Average Average Average Max Average
(sidelobe) (sidelobe max) (sidelobe) (sidelobe max)

Double-Logistic

Triple-Logistic

Double-Chebyshev ≈ 0.008 ≈ 0.04 ≈ 0.008 ≈ 0.04 ≈ 0.002 ≈ 0.01 ≈ 0.002 ≈ 0.01

Triple-Chebyshev ≈ −21dB ≈ −14dB ≈ −21dB ≈ −14dB ≈ −27dB ≈ −20dB ≈ −27dB ≈ −20dB

Logisitc-Sine

Logisitc-Sine-Logisitc

m-sequence
≈ 0.006 ≈ 0.02

− −
≈ 0.001 ≈ 0.007

− −
≈ −22dB ≈ −16dB ≈ −28dB ≈ −21dB

Fig. 4. Structure of PRNG

Triple-Chebyshev map, Logistic-Sine map, and Logistic-Sine-
Logistic map. Where, the Double-Logistic map means the case
where g(x) and f(x) are logistic maps with distinct fractal
parameters, and the Triple-Logistic map is also in a similar
manner.

Figure 3 shows their bifurcation diagrams and Lyapunov
exponent. In Figure 3, The left columns of (a), (b), and (c)
show the bifurcation diagrams of the Triple-Logistic map,
Triple-Chebyshev map, and Logistic-Sine-Logistic map, re-
spectively. The second column is the LE of CCS. As men-
tioned earlier, the positive Lyapunov Exponents (LE) of a dy-
namic system signify the substantial divergence of trajectories
from extremely close initial values in successive iterations.
Larger positive LE values indicate faster divergence of output
trajectories, thus implying superior chaotic performance.

One can observe that, CCSs employing three seed maps
have larger LE values than employing two seed maps in most
parameter ranges.

Based on the result presented in Figure 3, we can expect
that the LE of the CCS employing three seed maps can be an-
ticipated as a combination of the LE values of each individual
seed map. Consequently, we formulate the conjecture for the
LE of the CCS employing three seed maps as follows:

λΓ(x) = λf(x) + λg(x) + λh(x), (7)

where λf(x), λg(x) and λh(x) are LEs for f(x), g(x) and h(x),
respectively.

IV. PSEUDO-RANDOM NUMBER GENERATORS

In this paper, the real-valued output sequences of CCSs
are translated into binary sequences using two distinct binary
mapping methods. Figure 4 shows the block diagram of PRNG
for CCSs.

In digitization, the method of [15] outputs an 8-bits binary
mapping sequence of an 8-bits symbol sequence. The method
for generating an 8-bit symbol sequence in [15] involves
converting a 52-bit binary sequence based on the IEEE 754
standard and subsequently truncating it to 8 bits. Therefore,
whenever CCS is iterated, an 8-bit binary sequence is output
and concatenated. The second method involves mapping each
xn value to binary using half of the range of xn corresponding
to each map as a threshold. We will call this the “Threshold
method”.

We now proceed to generate binary chaotic sequences using
the [15] method and the Threshold method, as illustrated in
Figure 4. Subsequently, we compare the characteristics of
these sequences.

A. Correlation property

To analyze the correlation property, we consider binary
sequences of lengths 10, 000 and 100, 000 for both binary
mapping methods illustrated in Figure 4. In addition to
comparing the binary sequences generated by the six CCSs
mentioned in III-A, we also compare them with the auto-
correlation of m-sequences widely employed as PN codes.

The initial values for each map are considered from 0.4001
to 0.4100 at intervals of 0.0001, as shown in the Table I.
We observe the average auto-correlation and cross-correlation
values of the 100 binary sequences corresponding to these 100
initial values.

In Table I, the sidelobe average of auto-correlation means
the total average of all sidelobes excluding the peak value
(here, 1 because it is the normalized version). The sidelobe
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TABLE II
BALANCE PROPERTIES FOR BINARY CHAOTIC SEQUENCES USING TWO DISTINCT BINARY MAPPING METHOD

Classification

Length: 10000

Initial value: 0.4001− 0.4100

0 Average Percentage 1 Average Percentage

[15] method Threshold [15] method Threshold

Double-Logistic 49.9898 49.9767 50.0102 50.0233

Triple-Logistic 50.0285 50.0581 49.9715 49.9419

Double-Chebyshev 49.9731 49.9442 50.0269 50.0558

Triple-Chebyshev 50.0076 50.0068 49.9924 49.0068

Logisitc-Sine 50.0243 50.2240 49.9757 49.7760

Logisitc-Sine-Logisitc 49.9675 50.0081 50.0325 49.9919

TABLE III
RESULTS OF NIST STATISTICAL TEST FOR BINARY CHAOTIC SEQUENCES USING TWO DISTINCT BINARY MAPPING METHOD AND M-SEQUENCE

Classification Frequency Run Rank DFT Linear Comp. Cusum

Double-Logistic
[15] method 0.739918 0.911413 0.213309 0.534146 0.350485 0.911413

Threshold 0.534146 0.739918 0.122325 0.017912 0.739918 0.350485

Triple-Logistic
[15] method 0.739918 0.991468 0.534146 0.350485 0.739918 0.534146

Threshold 0.350485 0.534146 0.739918 0.122325 0.739918 0.350485

Double-Chebyshev
[15] method 0.911413 0.122325 0.122325 0.122325 0.122325 0.213309

Threshold 0.319084 0.595549 0.000000 0.000320 0.162606 0.534146

Triple-Chebyshev
[15] method 0.213309 0.739918 0.350485 0.911413 0.350485 0.534146

Threshold 0.115387 0.181557 0.002374 0.213309 0.102526 0.437274

Logisitc-Sine
[15] method 0.534146 0.350485 0.534146 0.213309 0.350485 0.534146

Threshold 0.213309 0.122325 0.739918 0.534146 0.534146 0.122325

Logisitc-Sine-Logisitc
[15] method 0.739918 0.213309 0.122325 0.911413 0.213309 0.739918

Threshold 0.066882 0.911413 0.739918 0.213309 0.350485 0.739918

m-sequence 0.262249 0.224821 0.000000 0.000320 0.000000 0.002559

max average of auto-correlation is the average of the sidelobe
max values for 100 sequences. The cross-correlation average
means the total average of all cross correlations corresponding
to 100 sequences. And Max average of cross-correlation means
the average of the maximum cross-correlation values of each
sequence.

In Table I, the results are highly similar for the two
binary mapping methods we are considering, so they are not
indicated separately. The m-sequence used in Table Table I
generated a longer m-sequence than the length of the sequence
being considered, and the experiment was conducted with its
truncated version. As a result of observation, the m-sequence
has about 1dB better auto-correlation than the binary chaotic
sequences. In addition, all values exhibit an improvement of
approximately 6dB in correlation performance as the sequence
length increases by a factor of 10.

B. Balance property

We analyze the balance property according to two binary
mapping methods. The sequence lengths and initial values are
provided in Table II. Table II shows the average ratio of 0 and
1 of sequences generated by two binary mapping methods with
100 initial values. According to the experimental results, it can
be observed that the ratio of 0s and 1s is uniform for all cases.

C. NIST SP 800-22 Statistical Test

NIST statistical tests (called NIST SP 800-22) are based on
testing hypotheses, the testing is a procedure for determining
whether claims about characteristics of a population are ac-
ceptable. That test involves determining whether a particular
sequence is random (this is called the null hypothesis). For
each test, the relevant randomness statistic be selected and
used to determine the acceptance or rejection of the null
hypothesis. Under the null hypothesis, the theoretical reference
distribution of this statistic is determined by mathematical
methods and a corresponding probability value (P-value) is
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calculated that summarizes the strength of evidence for the
null hypothesis. A P-value calculated for each test greater than
0.01 means that the test is satisfied with 99% confidence [13].
We have suitably selected 6 test (Frequency, Rank, Run, DFT,
Linear Complexity, Cumulative Sum) out of 15 tests for binary
pseudorandom sequences, and the test results for the two
binary mapping methods are shown in Table III.

The number of bitstreams required for the test is set to 100,
and the length of the bitstream is set to 10000. The parameters
related to the testing are applied the same as the initial value
of NIST 800-22. Table 3 shows the NIST test results of binary
chaos sequences generated by two different mapping methods,
as well as the NIST test results of truncated m-sequences of
the same length.

When [15] method is used, it is acceptable in all tests. For
Threshold method, it is not acceptable in Rnak and DFT tests
when Chebyshev map is used as a seed map. This implies
the need for an analysis to choose an appropriate threshold in
digitization. The m-sequence is not acceptable for most tests.

V. CONCLUSION

This paper analyzes the characteristics of sequences gener-
ated using cascade chaotic maps employing two or three seed
maps. To determine the sensitivity to tinitial values, we calcu-
late the LE for each map. Based on the results, we propose a
new conjecture for the LE of the cascade chaotic map using
three seed maps. The real-valued output sequences of cascade
chaotic systems are converted to the binary sequences using
two binary mapping methods. The binary sequences generated
in this manner exhibit good correlation and balance properties.
In addition, as a result of the NIST test, this is acceptable in
all tests when using the [15] method, but not in the Rnak
and DFT tests when using the Chebyshev map as the seed
map for the threshold method. This implies the need for an
analysis to choose an appropriate threshold in digitization. The
binary sequence generated by the chaotic map can generate an
infinite number of signals with non-periodic, good correlation
and balance characteristics even with very small differences
in initial values. Therefore, it is expected that the use of
chaotic binary sequences can be considered in the existing
DSSS system using PN codes.
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