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Abstract—Recently, the interest in construction equipment 
simulation has increased, and thus the necessity for rapid 
generation of 3D BIM construction equipment library for 
virtual space simulation at a low cost has also been raised. 
However, utilizing the existing BIM equipment libraries is 
inefficient as they are costly and require manual model making. 
As a solution, this paper suggests a framework for generating 
3D construction equipment library based on the images of 
equipment elements using edge detection. Furthermore, we 
examined the practicality of the method for automatic 3D model 
generation that we present. The framework suggested in this 
study is expected to improve the productivity of the construction 
industry by enhancing the efficiency of sharing status 
information and facilitating the equipment interferences review 
within a virtual environment. 

Keywords—Building Information Modeling, Construction 
Equipment, BIM Library, Edge Detection Algorithm, 
Computer Vision, Framework.  

I. INTRODUCTION 
In the construction industry, various technologies that 

incorporate smart construction techniques have been 
increasingly employed. These include Building Information 
Modeling (BIM), Digital Twin, drones, collision avoidance 
sensors for construction equipment, and more [1]. Recently, 
the adoption of unmanned and automated construction 
equipment technologies is increasing aligning with the 
intelligent construction era. Furthermore, alongside artificial 
intelligence models, construction equipment using machine 
control (MC) and machine guidance (MG) algorithms has 
been developed to address the shortage of skilled workers, 
enhance construction site safety, and improve productivity in 
the construction industry [2]. Meanwhile, large construction 
projects are usually carried out through the participation and 
the division of roles among various construction companies 
which makes the process highly complex and sometimes 
hinders the smooth exchange of construction status 
information. To address these issues, especially construction 
work simulation proves to be valuable for forecasting 
construction timelines and creating effective schedule plans 
for management purposes [3]. The utilization of a Four-
dimensional (4D) model with a high Level of Detail (LOD) to 
schedule and visualize the construction progress is anticipated 
to positively impact safety, productivity, and constructability 
on construction sites [4]. With this approach, researchers and 
managers can utilize a specific simulation language to design 
a construction operation, consider the predicted construction 
schedule, and efficiently evaluate various construction 
schemes [5].  

As the demand for construction equipment simulation 
increases [6], there is a growing requirement to develop 
construction equipment libraries that can be utilized in sharing 
construction situation information and enabling real-time 
interference control on large construction sites. A BIM library 
is a collection of object information, consisting of individual 
components that form a facility. It allows extensive sharing 
and utilization of the model information across multiple users 
and projects [7]. One of them is the construction equipment 
library, which is used for construction simulation such as 
material handling planning, movement planning, and 
interference review, thereby evaluating actual risk factors in 
construction execution. In BIM Modeling software like 
Autodesk Revit, it is possible to download and utilize BIM 
object libraries as open-source resources from The NBS 
National BIM library [8]. It is an online environment that 
provides BIM libraries made by diverse manufacturers. These 
BIM libraries have also gained acknowledgment of the 
availability of BIM models from leading producers of CAD 
platforms, including Bentley, Autodesk, Tekla, and others [9]. 

In the case of the current acquisition methods for 
construction equipment libraries, there are few models 
available, even though a wide variety of construction 
equipment is required at construction sites. While there are 
dynamic modeling tools available for equipment interference 
review, such as Fuzor [10] and Smart Planner [11], the 
operational costs of using these programs are significant, and 
the equipment libraries provided by websites are limited in 
number. For this reason, field practitioners are compelled to 
either manually create the required equipment libraries or 
incur significant expenses by outsourcing the task to a 
software company. The existing methods of utilizing 
equipment libraries present challenges rapidly constructing 
and efficiently utilizing desired libraries. Utilizing BIM 
libraries at the online storage is an efficient way of finding the 
necessary data without having to redraw and reproduce them. 
In addition, it can suggest an effective solution and reduce 
costs when creating repetitive model information for large 
projects [9]. In the field of construction equipment simulation, 
we must actively utilize the advantages of these BIM libraries. 
Therefore, we propose a framework for automatically 
generating a 3D construction equipment library based on 
images of construction equipment using a computer vision 
approach. Using this framework, it is possible to secure 
operability in equipment simulation and generate equipment 
libraries based on minimal image and information resources, 
without incurring substantial costs.  

Construction equipment pertains to machinery specifically 
designed for earthmoving tasks, encompassing a range of 
tools such as excavators, dump trucks, loaders, compaction 
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rollers, graders, scrapers, and more. These machines are 
primarily utilized for four fundamental earthworks processes: 
excavating, hauling, spreading, and compacting [12]. In 
previous research related to construction equipment, various 
themes have been explored, including maintenance, 
productivity, optimization, operator's competence, robotics, 
and other aspects [13]. Recent studies related to construction 
equipment primarily focus on the construction worksite 
monitoring system [14][15][16], which includes activity 
recognition [6][17][18][19], activity tracking [20][21], and 
performance monitoring [22][23]. The monitoring can lead to 
enhanced construction efficiency, cost control, and the 
identification of potential project challenges [24]. To optimize 
construction site operations, Lou et al. [20] developed a 
framework that utilizes computer vision and deep learning to 
automatically estimate the poses of various construction 
equipment in videos captured on construction sites. Wu et al. 
[21] proposed a novel differential received signal strength 
positioning algorithm for precise equipment tracking. Rashid 
and Louis [12] introduced a framework based on an RNN-
based deep learning network, while Langroodi et al. [17] 
devised a novel machine learning method that integrates a 
Random Forest classifier with the fractional calculus-based 
feature augmentation technique to create an accurate 
equipment activity recognition model.  In regard to enhancing 
the productivity and efficiency of construction equipment, 
previous research has been studied on various methods for 
managing the usage of equipment using database [25] [26] and 
predicting the residual value with machine learning [27]. 
Furthermore, with regard to construction equipment 
simulation, Marzouk and Moselhi [28] proposed an automated 
engine to simulate earthmoving operations for estimating 
construction time and cost. Additionally, frameworks for 
predicting construction situations, equipment utilization rate, 
estimated duration, and cost were developed to visualize the 
construction process in a virtual space [29][30]. In addition to 
the aforementioned preceding research, studies have been 
conducted on various topics, including the detection of 
operation's mental fatigue for preventing accidents [31], 
construction equipment safety education utilizing 4D BIM 
with virtual reality [4][32], the simplification of construction 
equipment supply using BIM [33], and the implementation of 
Robotic Autonomous Systems (RAS) in the earthmoving 
process [34]. 

After reviewing the previous literature related to 
construction equipment, studies on construction equipment 
monitoring using on-site images or videos using computer 
vision and deep learning have been mainly conducted. In the 
case of studies on equipment simulation, there have been 
proposals for automation engines and frameworks but most of 
the studies have been conducted under the assumption that 
construction libraries were already provided. Even though 
research has been conducted on diverse subjects related to 
construction equipment, the domain of automatically 
generating a construction equipment library has not been fully 
explored. 

This study presents a framework for automatically 
generating a construction equipment library based on images 
of construction equipment units. The main objective of this 
framework is to facilitate seamless information sharing 
regarding the construction status and enable the review of 
construction interferences in virtual space. First of all, we 
reviewed the previous research related to construction 
equipment and analyzed the grounded theory approach and the 

methods of findContours. Based on that, the framework was 
derived to enhance the productivity of construction 
equipment-related tasks. The framework is organized into 
three primary procedures, with comprehensive explanations 
of the algorithms and technical aspects linked to each step. 
Following the procedures outlined in the proposed framework, 
we developed a 3D equipment library using construction 
equipment unit images. The practical applicability of 
automatically generating a 3D construction equipment library 
has been verified. Lastly, we summarize the implications and 
limitations of this study, as well as delineate potential avenues 
for future investigation in this field. 

II. THEORY APPROACH AND PROPOSED FRAMEWORK 
In this paper, “findCountours()” script function, which is 

one of the OpenCV algorithms, was used to perform the edge 
line detection. Other methods, such as Sobel and Canny, 
determine the edge line based on the image gradient. In 
contrast, the "findContours()" function detects the boundary 
between 0 and 1 pixels, which requires a binary image 
consisting only of black or white pixels. Despite its more 
complex prerequisite, this function has two advantages 
compared to other edge detection algorithms in generating the 
BIM equipment library. Firstly, when the resolution of the 
input image is low, it is better to ignore the detailed shape of 
the pixels and instead, draw a clean straight line considering 
the overall boundary. The "findContours" function can 
achieve it with an approximation step, while others, like 
Canny, cannot. Secondly, it is also necessary to detect and 
select the inner edges inside the outermost edge to specify the 
coordinates of the connection points. It detects and indexes 
every discrete boundary in different hierarchies, which is 
useful when selecting the outline of a specific joint to 
determine the exact coordinate. The "findContours" function 
is a Python implementation of the two border-following 
algorithms proposed by Suzuki and Abe [35]. Among the two 
algorithms, we used the one that determines not only the 
borders but also their hierarchical relationship (i.e., border A 
surrounds border B). The detailed description of the algorithm 
is as follows: 

(a) If the current following border is between the 0-
component which contains the pixel ( p, q + 1) and the 1- 
component which contains the pixel ( p, q), change the value 
of the pixel (p, q) to - NBD. 

(b) Otherwise, set the value of the pixel (p, q) to NBD 
unless (p, q) is on an already followed border. 

where 0-component means a black pixel, 1-component 
means a white pixel, and NBD represents a distinct number of 
the border hierarchy.  

This paper suggests a framework, as depicted in Figure 1, 
to establish the foundation of a program that performs the 
following two functions: (i) automatically simulating an 
equipment interference review which examines the working 
range of equipment and its operation time, (ii) sharing 
information on the construction progress in a virtual space. 
The framework enables the simple creation of a new 3D BIM 
equipment library using images and the specification data of 
the equipment. 

The implementation procedure of the framework consists 
of three main steps: (i) Image Selection, (ii) Vector Edge Line 
Detection, and (iii) 3D Model Generation. First, the 
equipment images that will be used for creating the equipment 
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library are selected based on the specific conditions, which are 
described in the next part. Next, the outline of the equipment 
unit part is extracted from the selected image. This extracted 
outline is then vectorized, and by applying the preset size 
values including the thickness, a 3D model of the equipment 
unit can be created. Detailed algorithms and technicalities for 
each step are explained in the next part. 

 
Fig. 1: The process map of the research methodology 

 

III. FRAMEWORK IMPLEMENTATION 

A. Image Selection 
We start by collecting the images of the construction 

equipment that we opt to generate into a 3D model. In this 
paper, only the images that satisfy the following two 
conditions are used: (i) they must be taken from the side of the 
equipment, and (ii) they must have a white or transparent 
background. These restrictions are to ensure accurate 
detection of the edge line and the uniform quality of the 3D 
model without further processing such as AI-based object 
detection. Images that meet these qualifications can be found 
from the official catalogs provided by the manufacturers. 
Then, each collected equipment image is divided into 
minimum unit parts that perform uniform translational or 
rotational motion. This process could be skipped if there exist 
the official pre-divided images of the unit parts. 

The example image used in this paper is a side image of 
Cat® Heavy Duty Buckets cut from an official 360-degree 
image of Cat® 313 GC excavator by Caterpillar INC [36]. The 
resolution of the bucket image was originally 96 dpi. To find 
out the minimum resolution that can go through the edge 
detecting process, we conducted a modeling test with four 
images, each of which has 25%, 30%, 35%, and 40% of the 
original resolution. Table I is the result of the edge detection 
and the approximated point rate (APR) of each line. APR can 
be calculated as follows: 

APR = (NPO-NPA) / NPO 

where NPO stands for the number of points in an original 
edge line, and NPA stands for the number of points after 
approximation. Images with low resolution also have low 
APR because there are insufficient data to distinguish a 
meaningful detail from a noise. We considered that images 
should have an APR value higher than 0.75 for a high-quality 
outcome. However, since APR can only be calculated after the 
edge detection, it is recommended to check the resolution 
instead. Although the APR depends on the shape of the object, 
images with 0.75 or larger APR generally have around 25 dpi. 
Therefore, the image resolution of a unit part should be at least 
25 dpi (about 26% of 96 dpi) to correctly obtain an edge line. 

TABLE I.  THE RESULT OF THE EDGE DETECTION AND APR 

Dpi Image Result Enlargement APR 

25% 
(24 dpi) 

  

0.674 

30% 
(29 dpi) 

  

0.749 

35% 
(34 dpi) 

  

0.794 

40% 
(38 dpi) 

  

0.817 

Original 
(96 dpi) 

  

0.927 

 

B. Preprocessing 
Since the retrieved images are already divided into 

minimum unit parts that translate or rotate as one, detecting 
the internal components of a unit part is redundant. Therefore, 
the preprocessing stage is for specifying and separating the 
entire object from the background within the image. The 
preprocessing stage includes three steps: (i) Grayscale 
Conversion, (ii) Noise Reduction, and (iii) Thresholding. 

Grayscale Conversion. The official images are usually 
taken in color space which is unnecessary for edge detection. 
For that reason, we converted the RGB value of the pixels into 
grayscale value. This can be done by “COLOR 
RGB2GRAY() function” from OpenCV. The detailed 
equation of the conversion is as follows: 

RGB to Gray: Y = 0.299 ∙ R + 0.587 ∙ G + 0.114 ∙ B 

Noise Reduction. The resolution of the example bucket 
image is 96 dpi, which is a de facto standard image quality 
value for a 23-inch FHD monitor. However, as the images of 
the unit parts were created by cutting out the equipment image, 
they are likely to have a lower resolution than 96 dpi (e.g., 72 
dpi) in many cases. As a result, it is difficult to draw an 
accurate edge line in this low-resolution raster image, because 
the pixel size representing the line becomes relatively large. 
The noise reduction step is blurring out the shape of the pixels 
around the edges to obtain a clear and straight line. This study 
used "Gaussian Blur" of a kernel size 5 by 5 for denoising the 
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bucket. The kernel size may vary depending on the resolution 
of the input image. Denoising with Gaussian Blur was done 
by calling “GaussianBlur()” function from the OpenCV 
algorithm. 

Thresholding. The bucket image includes unnecessary 
edges such as edges around the joint between a bucket lip and 
the body or the imprinted logo. Thresholding is for erasing 
these unnecessary edges and leaving only the shape of the 
entire unit part. Global thresholding is applied which converts 
pixels with a grayscale value (Y) higher than a fixed threshold 
value into black pixels (Y=0) and the others into white pixels 
(Y=255). The threshold value we used for the sample image 
was 224, however, it is impossible to predetermine the exact 
number among the continuous values that can properly 
threshold any input images. For example, the blurred bucket 
image contained every grayscale value from 71 to 255. Table 
Ⅱ presents the results of thresholding with arbitrary values 
and their differences. As the threshold value influences the 
quality of the final output, the user should manipulate the 
value by considering multiple properties of the input image. 
The properties that should be considered in the process of the 
bucket image are as follows: (i) the color of the object in 
grayscale, (ii) some background pixels that are not pure white 
(Y<255), (iii) the possibility of the shadow from the 
equipment image not being completely erased and remaining 
as bright gray. Thresholding was done by calling the OpenCV 
threshold function. 

TABLE II.  THE COMPARISON OF DIFFERENT THRESHOLD VALUES 

Threshold 
= 224 

Threshold 
= 230 

Threshold 
= 240 

Threshold 
= 250 

    

    
C. Edge Line Detection 

The final goal of this paper is not only automating the 
generation of a 3D edge bounding model but also proposing a 
method for accumulating equipment data to create an 
equipment library. There are two types of data that can be 
collected through the whole process: a vectorized file of an 
edge line and a 3D model. In the edge line detection stage, we 
draw an edge line and save it as a vectorized file. This stage 
follows three steps which are (i) Contour Extraction, (ii) 
Contour Selection, and (iii) Vectorization.  

Contour Extraction. To detect the edge line from 
preprocessed images, 4 different methods from the OpenCV 
library were tested : (i) Canny, (ii) Sobel, (iii) findContours, 
(iv) findContours+approxPolyDP. 

Table Ⅲ shows the edge detection results of the four tested 
methods on the bucket image. Edge line detected by Canny 
and two findConoturs-based methods showed precise and 
clean lines. However, the lines made without the 
approxPolyDP had up to 14.2 times more points than the one 
made with it. This is because the more precise the line is, the 
more it divides into short vertical segments along the pixel 
shape. The lower the image resolution is, the stronger this 
phenomenon appears. For that reason, this paper used the 
findContours+approxPolyDP method for edge detection. 

approxPolyDP() is an implementation of the Ramer-Douglas-
Peucker algorithm in OpenCV. The epsilon value (the 
maximum distance between a point and a curve) used on the 
bucket image was 0.002 times the total line length.  

TABLE III.  THE COMPARISON OF EDGE LINE ALGORITHMS 

Canny Sobel Find Contours Contour-
Approximation 

    
Number of Points That Make Up Each Edge Line 

568 Not Available 545 40 

 

Contour Selection. The 2.2 Preprocessing stage may fail 
to separate the entire object from the background as a whole 
when the imported image has extremely low resolution. In this 
case, the pixels on the outer parts may be split into small 
individual pieces. Comparing the areas of the contoured lines 
and selecting the line with the largest area helps in choosing 
the targeted outline. 

Vectorization. The output of the 
"findContours+approxPolyDP" method is a two-dimensional 
array composed of the coordinates that represent the vertices 
of the edge line. The vectorization of this line was done by 
creating an empty DXF file and adding lines that connect 
neighboring vertices using the ezdxf interface on it. The ezdxf 
interface is a Python package developed by Manfred Moitzi 
which creates various versions of "dxf" files. 

D. 3D Model Generation 
To create a 3D model, a vectorized "dxf" file is imported 

into Autodesk Revit. The vector edge line is placed on the XY 
plane, and the depth information of the Z axis was collected 
from the manufacturer’s specification information. A 3D 
model is produced by creating a surface with the edge line and 
applying the depth value to the surface. Various sizes of 
models can be generated by adjusting the scale of the created 
model for several purposes. Table Ⅳ presents the output of 
each stage from image selection to 3D model generation. 

TABLE IV.  THE OUTPUT OF EACH STAGE 

(Step 1) 

Image 
Selection 

(Step 2) 

Preprocessing 

(Step 3) 

Edge Line 
Detection 

(Step 4) 

3D Model 
Generation 

    

IV. DISCUSSION 

A. Result Analysis 
Figure 2 shows an entire 3D model of Cat® 313 GC 

excavator generated by the method presented [36]. The 3D 
models of each part of the equipment, such as arm, boom, and 
superstructure, were also produced in the way described 
above. If compared side by side, the real photograph and the 
generated model seem similar enough in terms of the overall 
shape, the location of the connections, and the size proportion 
of each part. All algorithms, steps, and values described in the 
above methodology are tested in the process of generating the 
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3D model shown in Figure 2 to check their validity and 
necessity.  

 
Fig. 2: The excavator image and the entire 3D model 

 

 
Fig. 3: The 3D models of various attachments 

 

Moreover, the possibility of creating a construction 
equipment library using the suggested method was also 
assessed. The 3D model of the attachments including 
mulchers, hammers, grapples, and thumbs is shown in Figure 
3. It indicates that the proposed method can generate a 3D 
model regardless of which type of equipment is if there is a 
side image. Users can easily generate a 3D model with their 
desired attachments, check its working range, and conduct an 
interference or collision review. In addition, the produced 
model and its vectorized outline will be accumulated in the 
library and can be utilized again in the future. 

Table Ⅴ shows the time taken to build a DXF file of each 
unit part by using the method. The testing environment for this 
measurement is Apple M1 Pro with 16GB RAM in MacBook 
Pro 14 with Python 3 on Jupyter Lab. The result demonstrates 
that the time required will be between 10 to 100 milliseconds 
when an input image satisfies the two conditions described in 
Ⅲ-A Image Selection. To sum up, the method we suggest has 
satisfied the research objectives which are creating a 
vectorized edge line data from a 2D image and generating a 
3D model based on the line data. 

TABLE V.  THE TIME RECORD TAKEN TO BUILD EACH MODEL 

Bucket Arm Boom 
15.79 ms 55.40 ms 39.16 ms 

Superstructure Shoe Mulcher 
34.40 ms 20.84 ms 21.52 ms 
Hammer Grapple Shear 
14.93 ms 32.75 ms 37.07 ms 

 

B. Application Plan 
This paper presented a framework to rapidly create BIM 

libraries for construction equipment utilizing images and 
information of the equipment. Through construction 
equipment libraries from this framework, we can easily utilize 
BIM libraries for simulation in practical applications, 
resulting in time and cost savings. This is because the libraries 
can be generated using minimal resources of equipment 
images and data. In addition, it is possible to automatically 
simulate equipment interference reviews, equipment 
movement planning, and material movement checks in a 
virtual space. By simulating construction sites, we can share 
information about construction procedures and manage the 
construction schedule more efficiently.  

V. CONCLUSION AND FUTURE WORK 
In this paper, we suggested a novel framework to 

automatically generate 3D BIM libraries with side-view 
images of construction equipment. By generating a 3D model 
of an excavator and its attachments, we showed the 
practicality of our method. Also, the records of the lead time 
to build the 3D model proved the work efficiency of utilizing 
it in the field. This study holds significant implications as it 
offers a method for easily and swiftly generating a low-cost 
equipment BIM library solely from equipment images, 
enabling assembly with completed models. This technology 
applies not only to equipment but also to various fields that 
require libraries, enabling the effortless automatic generation 
of BIM models from images depicting construction structures 
and other physical forms. In the future, upon the development 
of equipment simulation systems, the rapid creation of virtual 
equipment models could facilitate the development of a digital 
twin environment, seamlessly integrating with real-world 
scenarios. However, a comparison between the time taken 
when using the method and the time when manually produced 
was not addressed in this study and could be examined more 
in further research. Based on this paper, we suggest some 
possible topics of future studies as follows: detecting 
equipment in images with no background removal (i.e., taken 
from a construction site, captured from a video) using AI 
object detection, developing a dynamic model for an 
interference and work range review, and comparing the 
performance numerically between various edge detection 
algorithms. 
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