
Dynamic Load Balancing for Energy-Delay
Tradeoff in a Cloud-RSU-Vehicle Architecture

Pyeongjun Choi
DGIST

Daegu, South Korea
pyeongjun.choi@dgist.ac.kr

Pildo Yoon
DGIST

Daegu, South Korea
yoonpildo@dgist.ac.kr

Jeongho Kwak
DGIST

Daegu, South Korea
jeongho.kwak@dgist.ac.kr

Abstract—Advanced autonomous driving services at Level 4
and above eliminate the need for constant driver supervision,
enabling vehicles to respond autonomously to various driving sce-
narios. The integration of components under edge environment
such as the On Board Unit (OBU), Road Side Units (RSUs),
and cloud infrastructure, facilitated by V2X communication,
enhances perception, decision-making, and control capabilities.
However, existing standards lack guidance on efficient computing
resource management in autonomous driving systems. To address
this, we propose a dynamic computing load balancing algorithm
for the cloud-RSU-vehicle architecture. This algorithm optimizes
resource allocation and utilization, considering network condi-
tions, computational capabilities, and processing queues using
Lyapunov optimization techniques. The stability of the algorithm
and trade-off between processing delay and energy consumption
is inspected through simulation.

Index Terms—Load balancing, Lyapunov optimization, Edge
computing

I. INTRODUCTION

Level 4 and higher autonomous driving services are char-
acterized by advanced automation and the elimination of the
need for constant driver supervision. These services aim to
enable autonomous vehicles to respond to various driving
scenarios and unexpected situations without direct human
control. To achieve this, autonomous driving technologies
require the integration of multiple components, including the
On Board Unit (OBU) of the vehicle, neighboring vehicles,
Road Side Units (RSUs), and cloud infrastructure, facilitated
by V2X communication. These components collaborate to
exchange data, enhance the perception, decision-making, and
control capabilities of autonomous vehicles, and ensure effec-
tive responses to dynamic road conditions.

The implementation of these technologies involves the uti-
lization of both network resources and computing resources,
enabling tasks such as information sharing between adjacent
vehicles and processing/transmission of sensor data. How-
ever, the existing standards lack comprehensive guidelines on
managing computing resources effectively in the context of
autonomous driving systems. This oversight poses a significant

This work was supported by Institute of Information & communica-
tions Technology Planning & Evaluation (IITP) grant funded by the Ko-
rea government(MSIT) (No.2023-0-01053, Development of Network Load
Balancing Techniques Based on Multiple Communication/Computing/Storage
Resources)

challenge as the demand for computing power increases with
the complexity of autonomous driving operations.

To address this challenge, we propose a dynamic computing
load balancing algorithm for cloud-RSU-vehicle architecture.
The algorithm aims to minimize the energy consumption of
vehicle while maintaining finite service time by optimizing
the allocation and utilization of computing resources in hi-
erarchical vehicle edge environments. By dynamically dis-
tributing computing loads between vehicles, RSU, and cloud,
our proposed algorithm can enhance the overall performance,
efficiency, and reliability of autonomous driving systems. This
adaptive load balancing mechanism takes into account various
factors such as network condition, computational capabilities
and processing queues of vehicles, RSU, and cloud to make
intelligent resource allocation decisions.

II. SYSTEM MODEL

A. Task and Arrival Model

We assume a time-slotted system t = {0, 1, 2, ..} where the
duration of each time slot is ∆t. We assume graphic-intensive
tasks (i.e. object detection) are generated by vehicles for each
time slot t. The size of task arrival ai(t) is represented in
bits, and it is independent and identically distributed for all
time slots. The arrival follows E[ai(t)] = λ and is bounded as
ai(t) ≤ amax. Each task could be processed by GPU in the
vehicle or offloaded to nearby RSU or remote cloud server.

B. Processing and Networking Model

We consider vehicles with GPU which supports DVFS.
Each vehicle can adjust its GPU clock frequency si(t) ∈
{si,1, si,2, ..., smax} (in cycles/∆t) at every time slot t. We
assume a single graphic-intensive task, so every arrival has
the same processing density γ, which is the number of cycles
needed to process a single bit. Note that the processing density
does not change among processing units (i.e. GPU in the
vehicle, RSU, Cloud). The vehicle can choose only one among
three options, local computing, offload to RSU, or offload
to Cloud. The scheduling indicator for offload to RSU and
Cloud is θij(t) ∈ {0, 1}, σi(t) ∈ {0, 1}. When RSU j is
chosen, θij = 1 and σi = 0. If the vehicle decides to process
within its own GPU, θij = 0 and σi = 0. For offloading,
we assume OFDMA so that there is no interference among
vehicles. Our GPU and network energy models are as follows.

737979-8-3503-1327-7/23/$31.00 ©2023 IEEE ICTC 2023

pui (si(t)) = αsi(t)
3 + β and pni (Σjθij(t) + σi(t)). Since the

vehicle chooses single offload option, Σjθij(t) + σi(t) ≤ 1
holds for every time slot t. We assume that the vehicle uses
constant energy for offloading either to RSU or Cloud and
network speed changes by dynamic channel conditions, upper
bounded with rmax, omax.

C. Queue Model

There exists separate processing queues (in bits) for each
component in cloud-RSU-vehicle architecture. The queueing
dynamics of our system is as follows.

Qi(t+ 1) =

[
Qi(t) + ai(t)−

si(t)(1− Σjθij(t)− σi(t))

γ

− Σjrij(t)θij(t)− oi(t)σi(t)

]+

(1)

Qj(t+ 1) =

[
Qj(t) + Σirij(t)−

sj

γ

]+
(2)

QK(t+ 1) =

[
QK(t) + Σioi(t)σi(t)−

sK

γ

]+
(3)

where Qi, Qj , QK stands for the processing queue of vehicle,
RSU and cloud respectively and [x]+ = max(x, 0).

III. DYNAMIC LOAD BALANCING ALGORITHM

A. Problem Formulation

Our objective is to minimize the energy consumption of
vehicle, while maintaining finite service time. To achieve this
goal, we control GPU clock frequency and offloading decision
according to the network condition and size of the remaining
tasks (i.e. queue length). We state our long-term optimization
as follows.

(P1): min
(s,θ,σ)

lim
T→∞

1

T
ΣtΣi{pui (si(t))(1− Σjθij(t)− σi(t))

+ pni (σi(t) + Σjθij(t))}

s.t. (C1): lim
T→∞

{
1

T
ΣT−1

t=0 Qi(t)+ΣJ
j=1Qj(t)+QK(t)

}
< ∞

(C2): σi(t) + Σjθij(t) ≤ 1, ∀i∀t

where (s,θ,σ) ≜ (si(t), θij(t), σi(t) : i ∈ I, j ∈ J , t ∈
{0, 1, ...∞}). Constraint (C1) means the queue lengths should
be finite (i.e. service time is finite) and Constraint (C2) means
only one option could be chosen among 3 offloading options.

B. Algorithm Design

Slot-by-slot objective function We transform original ob-
jective function using Lyapunov optimization techniques. First,
we define Lyapunov function as follows.

L
(
Q(t)

)
=

1

2
ΣI

i=1Qi(t)
2 +

1

2
ΣJ

j=1Qj(t)
2 +

1

2
QK(t)2 (4)

where Q(t) = {Qi(t), Qj(t), QK(t)} Then we define Lya-
punov drift using (4) as follows.

∆
(
L
(
Q(t)

))
= E

{
L
(
Q(t+ 1)

)
− L

(
Q(t)

)
|Q(t)

}
(5)

To reflect the penalty (i.e. energy consumption of vehicle) to
our objective function, we define Lyapunov drift-plus-penalty
function as follows.

∆
(
L
(
Q(t)

))
+ V E

{
Σip

u
i

(
si(t)

(
1− Σjθij(t)− σi(t)

))

+pni
(
σi(t) + Σjθij(t)

)}

(6)

where V is a trade-off parameter between the energy consump-
tion of the vehicle and queue stability. Then we can optimize
the energy consumption and queue stability by minimizing
single objective function (6).

Upper bound of objective function We derive the upper
bound of the objective function (6) with the queue model (1
∼ 3) and arrival model.
Lemma 1: under any possible control variables
(θij(t), oi(t), si(t)), we have:

∆
(
L
(
Q(t)

))
+ V E

{
Σip

u
i

(
si(t)

(
1− Σjθij(t)− σi(t)

))

+ pni
(
σi(t) + Σjθij(t)

)}

≤ B + V E
{
Σip

u
i

(
si(t)

(
1− Σjθij(t)− σi(t)

))

+ pni
(
σi(t) + Σjθij(t)

)
|Q(t)

}

− E
{
Σi

(
si(t)

(
1− Σjθij(t)− σi(t)

)
γ

+Σjrij(t)θij(t)

+ oi(t)σi(t)− ai(t)

)
Qi(t)|Q(t)

}

− E
{
Σj

(
sj

γ
− Σirij(t)θij(t)

)
Qj(t)|Q(t)

}

− E
{(

sK

γ
− Σioi(t)

)
QK(t)|Q(t)

}
(7)

where B =
1

2

(
I

(
a2max +

s2max

γ2
+ r2max + o2max

)

+J

(
s2j
γ2

+ r2max

)
+ o2max +

s2K
γ2

)
.

Proof: The proof can be done similarly as in [1]. ■

IV. DYNAMIC LOAD BALANCING ALGORITHM

We derive the algorithm that minimizes the upper bound
(i.e. right-hand side of (7)). We describe the mechanism of
the algorithm with pseudocode in algorithm 1.

At each time slot t, for each vehicle i, the dynamic load
balancing algorithm calculates the objective function (6) for

738

Algorithm 1 Dynamic Load Balancing
At each time slot t, for all vehicle i,
calculate
A = min

s(t)
V pui (si(t))−

(
si(t)

γ
− ai(t)

)
Qi(t)

B = V pni (1)−
(
ri(t)− ai(t)

)
Qi(t) + oi(t)Qj(t)

C = V pni (1)−
(
oi(t)− ai(t)

)
Qi(t) + oi(t)QK(t)

if A = min(A,B,C) then
Do local computing (θij(t) = 0, oi(t) = 0)

else if B = min(A,B,C) then
Offload to RSU (θij(t) = 1, oi(t) = 0)

else if C = min(A,B,C) then
Offload to Cloud (θij(t) = 0, oi(t) = 1)

end if

possible cases (i.e. local computing, offload to RSU, offload
to cloud). Note that for local computing, we can easily find
GPU clock frequency that minimizes the objective function
since the objective function is convex in our area of interest.

V. EVALUATION

A. Simulation Setup

We consider a single cloud server, 2 RSUs, and 4 vehicles.
Each vehicle generates task following normal distribution with
mean 3.12 Mbit and standard deviation 0.5 Mbit. Network
speed ri(t) and oi(t) follows normal distribution with mean
2.4 Mbit and standard deviation 0.48 Mbit. Each vehicle can
choose GPU clock frequency with the range of [100 MHz,
1000 MHz]. The processing density of the task γ is set as 167.
We compare proposed algorithm with (1) Only offloading:
choose better offloading target among RSU and cloud based
on (6) and (2) Only local: local computing with GPU clock
frequency chosen by (6).

B. Simulation Result

Fig. 1 shows the characteristics of our algorithm. Over time,
we can see that the queue length and GPU clock frequency of
each vehicle converge to the equilibrium point. In addition,
the energy consumption of each vehicle in fig. 1 shows
that the proposed algorithm achieves fairness by efficiently
distributing the load for each vehicle according to the network
speed and queue length. Fig. 2 shows the impact of trade-
off parameter V in our algorithm and the difference with
the comparison algorithm (i.e. only local). Only offloading
algorithm is not included in the graph because it fails to
achieve queue stability. By adjusting V , we can utilize the
trade-off between queue length and energy consumption. We
can see that our dynamic load balancing algorithm achieves
13% lower processing queue with similar energy consumption.

VI. CONCLUSION

In this paper, we proposed dynamic load balancing al-
gorithm for cloud-RSU-vehicle architecture using Lyapunov
optimization and showed operating characteristics of algorithm

Fig. 1. Operating characteristics of dynamic load balancing algorithm

Fig. 2. Trade-off between processing queue and energy consumption

and trade-off between processing queue and energy consump-
tion through simulation. We expect that this technology will
play a crucial role in advancing the capabilities of autonomous
driving systems, improving safety, and providing a reliable
autonomous driving experience for users.

REFERENCES

[1] J. Kwak, Y. Kim, J. Lee, and S. Chong, “Dream: Dynamic resource and
task allocation for energy minimization in mobile cloud systems,” IEEE
Journal on Selected Areas in Communications, vol. 33, no. 12, pp. 2510–
2523, 2015.

739

