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Abstract—This paper introduces a novel approach using deep
reinforcement learning (DRL) to enhance network slicing plan-
ning and handovers in satellite networks. We propose a proactive
handover trigger based on remaining service time and employ the
deep deterministic policy gradient (DDPG) algorithm to maxi-
mize the utility of virtual networks (VNs). Focusing on the Korean
Peninsula, we simulate a low earth orbit (LEO) satellite network
based on Starlink satellite specifications and demonstrate the
superiority of our intelligent network management technique
compared to baseline methods, particularly in terms of latency
performance and the number of handovers.

Index Terms—Satellite network, satellite network slicing plan-
ning, handover, deep reinforcement learning.

I. INTRODUCTION

Low Earth orbit (LEO) satellite networks, based on inter-
satellite links and satellite onboard computing, are expected
to play a pivotal role as a core feature of 6G mobile com-
munications by offering global coverage. In the context of
managing the satellite constellations, the concept of satellite
network slicing has emerged [1]. This approach virtually
creates independent virtual networks (VNs) within a shared
physical network infrastructure and enables the provisioning
of dedicated services to each slice customer, heralding its
potential to facilitate a range of user-tailored services with
diverse service requirements [2]. However, the end-to-end
connection and maintenance performance of satellite network
slice planning (SNSP) can manifest diversely depending on
the employed VN embedding (VNE) schemes [1]. Thus, the
effects of the dynamic network topology due to the mobility
of LEO satellites should be addressed to ensure stable service
provision.

In this paper, we introduce a novel approach based on deep
reinforcement learning (DRL) to choose adequate schemes of
SNSP and determine the handover timing. Additionally, this
study assumes slice customers making VN requests within a
localized scope of the Korean Peninsula, while the satellite
network is simulated based on the specifications of the Starlink
satellite constellation.

II. DRL-BASED SNSP AND HANDOVER

In this section, the SNSP process of reserving the VN re-
source for each slice customer, i.e. VNE, and handover process
of VNs are introduced based on DRL. Instead of selecting
access nodes among the visible satellites for node embedding

Fig. 1. VNE methods around the Korean Peninsula.

and searching end-to-end paths for link embedding, the DRL
agent that manages satellite networks can select an VNE
method among baseline schemes, which is illustrated in fig. 1.
Among the node embedding methods, one method, referred to
as (Closest), chooses the nearest visible satellite as the virtual
node, resulting in the shortest one-hop propagation delay.
Another approach, known as (Longest), selects the satellite
with the longest available service time. Additionally, the DRL
agent considers two routing strategies: (Max Flow), which fo-
cuses on network capacity maximization, and (Low Latency),
which emphasizes finding the shortest path. Subsequent to the
determination of each embedding method by the DRL agent,
it is possible to evaluate the service available time and the
end-to-end latency. Through these metrics, the reward ri for
the i-th VNE is defined as

ri = (1− αi) ·
log (1 + ti)

Li
, (1)

where ti,Li represent the service available time and the end-
to-end latency from action ai of the i-th VNE, respectively.
Lastly, instead of maintaining the service until the access
node exits the line of sight, we define a handover trigger αi

to proactively initiate handovers through DRL. The handover
trigger employs an algorithm that enforces handovers on the
VNs when there is a remaining service available time of
αi · ti. Therefore, the reward linearly decreases as considering
the proactive handover.
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Fig. 2. Comparison of end-to-end latency performance for each method.

Because using all the network states acquired can be
problematic for DRL, the state is defined as simplified
observable features to implement efficient SNSP, and is
expressed as follows:

si = (ti,C , ti,L,Li,CMF ,Li,LMF ,Li,CLL,Li,LLL) , (2)

where ti,C is the service available time with the closest
node based embedding methods that is evaluated until the
embedded node is out of the maximum accessible distance,
while ti,L is with the longest node based embedding methods.
Li,CMF ,Li,LMF ,Li,CLL and Li,LLL represent the end-to-
end latency regarding the embedding methods (Closest, Max
Flow), (Longest, Max Flow), (Closest, Low Latency) and
(Longest, Low Latency), respectively. Based on the given
states, the DRL agent determines suitable actions for SNSP
and handover, which are expressed as

ai = (Pri,node, Pri,link, αi) , (3)

where Pri,node and Pri,link respectively denote the parameters
of Bernoulli distributions for selecting closest node embedding
and Max flow link embedding for the i-th VNE. The actual
embedding method is chosen through a coin toss. Thus, after
the embedding technique is stochastically determined, the
reward (1) for the i-th VNE is computed based on service
available time, ti, and end-to-end performance, Li, of the
selected embedding method in (2).

The aforementioned SNSP and handover problems require
making continuous-valued actions and the deep deterministic
policy gradient (DDPG) algorithm [3], which is applicable to
such problem formulations, can be used. In the upcoming
section, we present the results of training neural network
parameters using the SNSP-DDPG algorithm to maximize the
long-term rewards of the satellite network around the Korean
Peninsula.

III. SIMULATION RESULTS

Fig. 2 depicts average end-to-end latency for each method,
while the blue and gray bars represent longest node based
embeddings and closest node based embeddings, respectively.
Although (Low Latency) methods demonstrate favorable la-
tency performance in each benchmark case, SNSP-DDPG
outperforms other methods in terms of latency performance by

Fig. 3. Comparison of the number of handovers.

selecting appropriate methods, indicated by the red bar. Fig.
3 shows the numbers of handovers. The number of handovers
is solely influenced by the node embedding methods and
(Closest) methods exhibit relatively higher handover counts.
Meanwhile, SNSP-DDPG strikes a balance in terms of the
handover count by intelligently selecting two node embeddings
for each VN.

IV. CONCLUSION

In this paper, we have introduced a intelligent method
based on DRL for effective SNSP and handover decisions in
the Korean Peninsula scenarios. The simulation results have
showcased that our approach provides a trade-off in terms
of the handover count across the node embedding methods,
while excelling in latency performance against all methods.
The superiority of our intelligent network management
technique over baseline methods affirms its potential for
advancing satellite network services.
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