
Towards Real-time Vietnamese Traffic Sign
Recognition on Embedded Systems

Phuong-Nam Tran
Dept. of Computer Science and Engineering

Kyung Hee University
Yongin-si, Gyeonggi-do, Republic of Korea

tpnam0901@khu.ac.kr

Nhat Truong Pham
Dept. of Integrative Biotechnology

Sungkyunkwan University
Suwon, Republic of Korea
truongpham96@skku.edu

Nam Van Hai Phan
Dept. of Computing Fundamental

FPT University
Ho Chi Minh City, Vietnam
nampvhse182309@fpt.edu.vn

Duc Tai Phan
Dept. of Computing Fundamental

FPT University
Ho Chi Minh City, Vietnam
phantaiduc2005@gmail.com

Cuong Tuan Nguyen
Faculty of Engineering

Vietnamese-German University
Binh Duong, Vietnam
cuong.nt2@vgu.edu.vn

Duc Ngoc Minh Dang∗
Dept. of Computing Fundamental

FPT University
Ho Chi Minh City, Vietnam

ducdnm2@fe.edu.vn

Abstract—AI development has brought many significant
changes in various aspects of our daily lives in recent years.
Integrating AI technology into various applications has rev-
olutionized multiple domains, and one particularly vital area
is traffic sign recognition, which significantly enhances driver
safety. This paper presents an approach to traffic sign recognition
specifically designed for the Jetson Nano 2GB device. By utilizing
the YOLOv8 Nano model, the proposed approach achieves a
remarkable frame rate of up to 32 frames per second (FPS).
To optimize inference speed on Jetson with limited memory, the
approach incorporates TensorRT and quantization techniques. In
addition, this paper introduces a dataset called the Vietnamese
Traffic Sign Detection Database 100 (VTSDB100). This dataset
is an extension of the VTSDB46 dataset and encompasses a
comprehensive collection of 100 different classes of traffic signs.
These signs were captured in diverse locations within Ho Chi
Minh City, Vietnam, providing a rich and diverse dataset for
training and evaluating traffic sign recognition models. Extensive
experiments and analyses were conducted using various object
detection methods on the VTSDB100 dataset. The findings
highlight the potential of deploying the proposed approach on
resource-constrained devices and provide valuable insights for
further research and development in AI-powered driver safety
systems.

Index Terms—Traffic Sign Recognition; Object Detection;
Quantization; Vietnamese Traffic Sign dataset; Deep learning

I. INTRODUCTION

Traffic sign recognition (TSR) has been a well-studied topic.
However, its recent implementation in the Internet of Things
(IoT) domain faces limitations due to hardware constraints,
making it challenging to deploy high-performance deep learn-
ing models on IoT devices. Furthermore, achieving high frame
rates on these devices poses additional difficulties, especially
when memory and hardware resources are limited. As a result,
deep learning approaches become costly to implement on such
devices. To tackle this issue, we leverage various techniques

∗ Corresponding author: Duc Ngoc Minh Dang (ducdnm2@fe.edu.vn)

and frameworks to reduce the model size and memory require-
ments for running deep learning models efficiently.

Furthermore, this paper conducts experiments using recent
deep-learning methods to assess their performance on the
VTSDB100 dataset. Faster R-CNN [1] is selected for two-
stage object detection due to its high accuracy. As for one-
stage object detection, popular models such as You Only
Look Once (YOLO) [2] and its variants, YOLOX [3] and
RetinaNet [4], are utilized to observe their performance on our
dataset. These experiments establish a baseline performance
on VTSDB100, serving as a valuable reference for future
research.

Our primary contributions in this paper cover three main
aspects:

1) We introduce a new dataset, Vietnamese Traffic Sign
Detection Database 100 (VTSDB100), which extends
the previous VTSDB46 dataset, providing a more com-
prehensive collection of Vietnamese traffic signs for
object recognition research.

2) We conduct a baseline performance evaluation on
the VTSDB100 dataset, utilizing various recent deep-
learning models. This serves as a valuable reference for
future research in the field.

3) We successfully deploy deep learning models on a
resource-constrained Jetson Nano device with 2GB
RAM, achieving high-speed performance through quan-
tization techniques and TensorRT.

The remainder of this paper is organized as follows. In
Section II, we provide an overview of existing research on
TSR. Then, in Section III, we explain the deep learning
architecture used in our experiment and how we compressed
the model to make it suitable for running on IoT devices.
Next, we present the results of our experiments on different
deep learning architectures using the VTSDB100 dataset and
IoT devices in Section IV. Finally, we wrap up our study in

1979-8-3503-6463-7/24/$31.00 ©2024 IEEE ICTC 2024

Section V by selecting the best model with the most effective
performance. We also discuss its potential applications and
future developments in this field.

II. RELATED WORK

Various techniques have been employed to address the chal-
lenge of traffic sign recognition, with deep learning methods
being the most popular and practical approach. As artificial
intelligence continues to advance, object detection techniques
have evolved to become faster and more accurate. One notable
technique in object detection is the introduction of two-
stage object detection, proposed by Faster R-CNN [1]. This
approach allows deep learning models to achieve real-time
object detection capabilities. However, researchers have since
proposed a simplified alternative known as one-stage object
detection. One of the most popular methods in this architecture
is YOLO [2]. YOLO takes a single holistic approach to
object detection, directly predicting bounding boxes and class
probabilities in a single pass. This design allows for faster
inference speed compared to two-stage methods. Building
upon the YOLO architecture, subsequent variants such as
YOLOv8 [5], YOLOv9 [6], and the most recent iteration,
YOLOv10 [7], have been introduced. These iterations aim to
improve further the performance and accuracy of the original
YOLO approach. Additionally, other object detection architec-
tures have emerged based on the YOLO framework, including
YOLOX [3] and YOLO-NAS [8]. These architectures leverage
the strengths of YOLO while introducing novel enhancements
and optimizations. Overall, the development and evolution of
these object detection architectures, particularly the YOLO
family, have significantly contributed to advancing the field
and expanding the potential applications of real-time object
detection, particularly in the realm of IoT devices.

Traffic sign detection has been a popular topic in recent
years, and various methods and datasets have been introduced
to bring the application of this field into real life. German
Traffic Sign Detection Benchmark dataset (GTSDB) [9] is one
of the most popular datasets in Germany that is created for
traffic sign object detection. GTSDB consists of 900 images
and annotations that provide information about the traffic
signs’ locations. However, this dataset doesn’t specify the type
of traffic sign present in each image and is mainly designed for
benchmarking purposes rather than practical use in real-world
scenarios. Another popular dataset is the Tsinghua-Tencent
100K [10] dataset, considered the most suitable for meeting
real-time application requirements in China. This dataset con-
sists of 90,000 Tencent Street View panoramas, with around
30,000 instances of traffic signs. It captures images under
different lighting and weather conditions, reflecting real-world
scenarios. The Tsinghua-Tencent 100K dataset offers a high-
quality collection that can be effectively utilized for traffic sign
applications in China. However, it is essential to note that this
dataset is captured in a panoramic format, which may result in
reduced performance when applied to regular cameras. In the
case of Vietnam, using existing datasets such as the Tsinghua-
Tencent 100K may result in lower performance due to the

discrepancies and potential absence of Vietnamese traffic signs
in those datasets. This is because the traffic sign designs and
characteristics can vary between countries. VTSDB46 [11] and
GPVNS [12] are the two latest traffic sign datasets available in
Vietnam. While GPVNS only consists of 1088 samples across
29 different classes, the VTSDB46 dataset presents a more
extensive collection, comprising 80,000 samples categorized
into 46 distinct classes. This larger dataset provides an ideal
resource for the development of applications. The VTSDB46
was captured in numerous locations throughout Ho Chi Minh
City, Vietnam. With its quality recording and accurate labeling,
VTSDB46 offers a high-quality dataset tailored to Vietnamese
traffic signs. This dataset is suitable for real-time traffic sign
recognition applications in Vietnam. However, VTSDB46 still
has limitations, as it does not encompass all the traffic sign
classes in Vietnam. Therefore, further efforts are needed to
create a more comprehensive dataset for complete traffic sign
recognition applications in the country.

III. METHODOLOGY

A. Vietnamese Traffic Sign Detection Database 100 -
VTSDB100

The VTSDB46 [11] dataset is a collection of traffic sign
data recorded in 12 districts of Ho Chi Minh City, Vietnam. It
focuses on traffic signs in urban environments, considering
variations in lighting, background, and weather conditions.
However, this dataset includes only 46 types of traffic signs
from the four main groups of Vietnamese traffic signs. To
expand the dataset, we created VTSDB100, which contains
100 classes covering the most common Vietnamese traffic
signs.

The VTSDB100 dataset contains more than 100,000 sam-
ples created by augmenting over 35,000 original samples.
These original samples were captured using a GoPro cam-
era. To annotate the dataset, we utilize a tool called Label
Studio[13]. This tool provides a user-friendly interface and
efficient functionality for annotation purposes. The annotation
process involves manually labeling the 35,000 samples and
converting the dataset into a YOLO format commonly used
for object detection tasks. During the annotation process, we
focus on labeling only those traffic signs that can be easily
identified by human eyes. If a traffic sign causes confusion or
its content is not fully visible and readable, we do not label
it. For instance, if a traffic sign displays only the number ”5”
instead of the complete ”50” indicating a speed limit of 50,
we do not include it in the annotations.

The VTSDB100 dataset is split into training, validation,
and testing sets. Before dividing the VTSDB100 dataset, we
performed data augmentation using the Albumentations [14]
library, which provides various augmentation methods to aug-
ment the dataset. These methods include random cropping with
a probability of 1.0, random adjustments to brightness and
contrast with a probability of 0.5, random gamma adjustments
with a probability of 0.4, random rotation up to 20 degrees
with a probability of 0.4, random rain effects with a probability
of 0.2, random fog effects with a probability of 0.2, and

2

random contrast-limited adaptive histogram equalization with
a probability of 0.4. We randomly selected 100 samples per
class from the VTSDB100 dataset to create the testing set. This
approach ensured that the testing set contained a diverse repre-
sentation of samples from each class, providing an independent
evaluation of the model’s performance. Subsequently, we di-
vided the remaining samples into two subsets: the training and
validation sets. For the validation set, we continued randomly
selecting 100 samples per class from the remaining dataset.
The random selection process considered the availability of
samples for each class. Therefore, the number of samples in
the validation and testing sets may be smaller than the target
of 10,000 samples. Table I illustrates the number of training,
validation, and test subsets samples in the VTSDB100 dataset.

TABLE I
THE DISTRIBUTION OF TRAINING, VALIDATION, AND TESTING SETS IN

THE VTSDB100 DATASET.

Subset Number of samples
Training 77,499

Validation 7,496
Testing 7,519

B. Proposed methods

1) Object detection: In this work, we evaluated various
object detection models using our new dataset. Specifically,
we examined three recent methods from the YOLO (You Only
Look Once) family, namely YOLOv8 [5], YOLOv9 [6], and
YOLOv10 [7]. These methods are known for their one-stage
object detection approach, offering a balance between speed
and performance with minimal parameters. The feature pyra-
mid network [15] employed in the YOLO family contributes to
its high performance and efficiency. To accommodate the use
of IoT devices, we focused on training and experimenting with
the smallest and fastest models within each YOLO method.
However, if larger architectures demonstrated superior perfor-
mance, they were also considered in our work. In addition
to the YOLO family, we also experimented with YOLOX
Nano [3], which introduces a novel approach to object detec-
tion. Unlike other YOLO methods, YOLOX Nano predicts an
object’s location without relying on anchor boxes. It employs a
decoupled head architecture, separating class predictions from
bounding box regression. By combining anchor-free detection,
the decoupled head, and advanced techniques, YOLOX Nano
achieves improved object detection performance, making it
suitable for real-time tasks.

In our two-stage object detection experiments, we utilized
the Faster R-CNN [1] architecture with the MobileNetV3 [16]
backbone. Faster R-CNN is one of the earliest and most
widely used methods known for its high performance in object
detection tasks. The Faster R-CNN architecture consists of
two main components. First, a convolutional neural network
(CNN) is employed to extract features from the input image.
These features capture hierarchical representations of the im-
age, enabling the network to understand the visual content.

The second component is the region proposal network (RPN),
which operates on the extracted features. The RPN predicts
regions of interest or anchor boxes that likely contain objects.
These regions are potential candidates for object detection.
Once the regions of interest are identified, a fully connected
layer is utilized to predict the class labels and refine the bound-
ing box coordinates for the detected objects. The strength
of Faster R-CNN lies in its two-stage network architecture.
By leveraging the feature extraction capabilities of CNNs and
the region proposal mechanism, Faster R-CNN achieves high
accuracy in object detection. However, due to the two-stage
process, the speed of Faster R-CNN is slower compared to
one-stage architectures.

2) IoT device selection: Deploying a deep learning model
on an IoT device is crucial for bringing the application
into real-life scenarios. In such a system, it is essential to
consider the constraints of power supply, hardware resources,
and cost-effectiveness. To address these requirements, we
chose the Jetson Nano 2GB as the baseline platform for our
application. The Jetson Nano 2GB is a cost-effective IoT
device with limited RAM but offers acceptable performance
for deep learning tasks. Despite having only 2GB of RAM,
the presence of CUDA cores on the Jetson Nano 2GB enables
efficient computation for deep learning models. CUDA cores
are parallel processors specifically designed to accelerate deep
learning workloads, providing a significant boost in perfor-
mance compared to traditional CPUs. By utilizing the Jetson
Nano 2GB, we can deploy deep learning model in cars, where
low power consumption and limited hardware resources are
critical.

On the other hand, the Jetson Orin Nano 8GB is a more
powerful option than the Jetson Nano. It has a GPU that
contains eight times the number of CUDA cores compared
to the Jetson Nano. Hence, it can handle more complex deep-
learning calculations and models. The Jetson Orin also has
better RAM, allowing larger models to be loaded and run in
real time. However, there are some drawbacks to using the
Jetson Orin. Firstly, it is more expensive than the Jetson Nano,
so the cost of implementing an application using the Jetson
Orin would be higher. Additionally, the power supply becomes
a challenge for Jetson Orin. While the Jetson Nano only uti-
lizes a 5V power supply, the Jetson Orin needs a minimum of
15V power supply to function correctly. Therefore, additional
power considerations and costs need to be taken into account
when deploying in real-life applications.

3) Model compression: To enhance performance with lim-
ited 2GB RAM, it is important to select the appropriate frame-
work and deep learning model. In this research, we utilize
the TensorRT framework, specifically designed for NVIDIA
Jetson devices. TensorRT is a software development kit that
enables efficient deep learning inference on NVIDIA GPUs. It
is optimized for the Jetson Nano, enabling high-performance
deep-learning models. To integrate our model with TensorRT,
we first convert our PyTorch model to the ONNX format to
ensure compatibility. Then, we apply a quantization process
to the ONNX model. Quantization involves converting the

3

Fig. 1. Real-Time Traffic Sign Recognition Workflow on Jetson Nano 2GB using Object Detection with Integrated Tracking Algorithm.

model’s data type from float32 to int8, reducing the size of
model parameters, and improving model speed. However, it
is essential to note that the quantization process has some
limitations. One limitation is that the model’s accuracy may
decrease due to the limited number of available data types
with int8. Finally, we convert the model from ONNX to
TensorRT format using the conversion provided by NVIDIA.
The final conversion takes place on Jetson devices to ensure
TensorRT package compatibility, while the other conversions
and quantization processes are performed on the server.

4) Workflow: The design for the TSR system is depicted
in Fig. 1. The process starts with the Jetson Nano receiving
an image from the camera in car. The Jetson Nano then uses
deep learning to analyze the image and predict the location
and type of the traffic sign. A simple tracking method is used
to track the traffic signs, which calculates the distance between
the predicted bounding box’s center and the historical center
of the bounding box. The pair with the minimum distance
is selected and compared against a threshold value. A new
ID is assigned to the traffic sign if the distance exceeds the
threshold. The traffic sign retains its previous ID if the distance
is below the threshold.

Once the tracking ID is obtained, the relevant information,
such as the bounding box coordinates, class label, and tracking
ID, is added to a tracklet. A tracklet is a database element
that maps the track ID to a list of bounding boxes and
corresponding class labels. Each entry in the tracklet represents
the location and type of the traffic sign at a specific frame in
the past. The length of the tracklet can vary depending on the
implementation, typically 10 frames in our experiments.

Before sending notifications to the driver, a class filter algo-
rithm is applied to minimize false predictions. The complete
message is sent to the driver only if the number of elements
in the tracklet is exceeds a certain threshold. In such cases,
the traffic sign type assigned to the message is determined by
the most frequently occurring class within the tracklet. This
approach helps reduce false predictions caused by noise and
other factors.

IV. EXPERIMENTS

A. Model setup

We employ the default hyperparameters described in their
works to optimize all models’ performance. We change the
batch size to 32 and train these models for 50 epochs. During
training, we employ an early stopping strategy where the
models are evaluated on the validation dataset after each
epoch, and the weights are saved based on the best results
metric value obtained on the validation dataset. We utilize
pre-trained models from the COCO dataset for all methods to
initialize the model weights. This approach enables the models
to leverage the knowledge learned from a large and diverse
dataset, which can help improve their performance and reduce
the training cost.

All the models are experimented on four different envi-
ronments: Nvidia K80, Intel Core i9 12700K, Jetson Orin
Nano, and Jetson Nano. The Intel Core i9 12700K and Nvidia
K80 are components of a workstation. The Intel Core i9
12700K is the CPU, and the Nvidia K80 is the GPU. This
workstation has 64GB of RAM and 1TB of SSD memory.
The Jetson Orin Nano is an IoT device developed by NVIDIA
that features 1024 CUDA cores and 8GB of RAM. The Jetson
Nano is another NVIDIA IoT device but with fewer resources.
It has only 128 CUDA cores and 2GB of RAM. All these
environments are set up on Linux systems. The Jetson Nano
uses Ubuntu 16.04, the Jetson Orin utilizes Ubuntu 20.04, and
the workstation is set up with Debian Bookworm.

B. Model performance

1) Metrics: We evaluate model performance and speed
using two common metrics: mean average precision (mAP)
and multiply-accumulate operations (MACs). mAP, a widely
used metric in computer vision for assessing object detection
algorithms or models, calculates the average precision across
all classes, providing insights into the accuracy of predictions
for different object classes. In our experiment, we employ
the COCO API to evaluate model performance, resulting in
a mAP@50 (intersection over union threshold of 0.5) and a

4

TABLE II
PERFORMANCE COMPARISON OF VARIOUS DEEP LEARNING MODELS ON THE VTSDB100 DATASET

Method Variant Training (%) Validation (%) Testing (%)
mAP@50 mAP@50:95 mAP@50 mAP@50:95 mAP@50 mAP@50:95

YOLOv10 Nano 0.974 0.809 0.969 0.796 0.979 0.808
YOLOv8 Nano 0.973 0.810 0.969 0.800 0.979 0.810
YOLOv8 Small 0.979 0.834 0.974 0.819 0.984 0.831
YOLOv8 Medium 0.980 0.856 0.975 0.838 0.986 0.851
YOLOX Nano 0.954 0.728 0.942 0.713 0.944 0.708

RetinaNet Resnet50 0.985 0.840 0.959 0.777 0.979 0.815
Faster R-CNN MobileNetV3-Large 0.975 0.823 0.954 0.764 0.970 0.793

mAP@50:95 (intersection over union thresholds ranging from
0.5 to 0.95 with a step size of 0.05).

MACs are used to measure the complexity and speed of the
model. They count the number of multiply and add operations
performed by the deep learning model while ignoring other
operations. Another metric for evaluating model speed is
floating-point operations per second (FLOPs), which counts
the number of floating-point operations in a deep learning
model per second. Both MACs and FLOPs are metrics that
indicate the speed or efficiency of a deep learning model based
on the number of operations it performs. However, the values
obtained for MACs and FLOPs may vary for the same archi-
tecture depending on how the researcher implements them. To
address this variation, we use a Python library called Thop.
This library considers only the number of multiplications in
the deep learning model and ignores all the other operations,
making the result value more general. In addition, the MACs
value obtained using this library is approximately half of the
FLOPs value using the other library.

2) Results and analysis: Table II illustrates the performance
of different deep learning models on the VTSDB100 dataset.
We aimed to find a suitable model for IoT devices with
high performance and low latency. Therefore, we focused
on using small models for training and evaluation while
including some large models for performance comparison. The
table shows that RetinaNet [4] with ResNet50 [17] backbone
achieved excellent results during training with mAP@50 of
0.985 and mAP@50:95 of 0.840. However, its performance
significantly decreased on both the validation and testing sets
due to overfitting on the training set. On the other hand,
YOLOv8 Nano [5], which has a smaller backbone, performed
better than RetinaNet on the validation and testing datasets.
The YOLOv8 Nano model has a compact architecture and
incorporates a feature pyramid network, which allows it to cap-
ture better features while maintaining high-speed performance
and minimal parameters. This makes YOLOv8 Nano a more
suitable choice for IoT devices, where resource constraints
are essential to consider. Interestingly, the performance of
YOLOv10 Nano [7], a newer version of the YOLO series,
did not surpass that of YOLOv8 Nano. YOLOv10 Nano
showed a slight decrease in performance when evaluated on
our validation and testing sets using the mAP@50:95 metric.

When comparing the MACs and speed of these models,
YOLOv8 Nano [5] stands out as the fastest among them,
except for YOLOX Nano [3], as shown in Table III. The

average inference speed in the table is calculated by the
average inference time of all samples in the validation dataset.
Despite having fewer parameters, YOLOv10 Nano [7] still
takes longer for inference than YOLOv8 Nano. YOLOv8 Nano
has over 0.5 million parameters but smaller MACs, resulting
in faster inference times. YOLOv8 Nano’s inference time is
up to 2 ms faster than YOLOv10 Nano on the Tesla K80
and 16 ms faster on the Intel i9-12900K under the same
testing conditions, respectively. However, the smaller number
of parameters in YOLOv10 Nano still makes it worth further
research, considering it achieves approximately the same mAP
as YOLOv8 Nano.

On the other hand, YOLOX Nano demonstrates high speed
and low memory requirements due to its anchor-free algo-
rithm. This makes YOLOX Nano suitable for deployment on
IoT devices with lower hardware capabilities than the Jetson
Nano 2G. However, YOLOX Nano’s performance is worse
than that of the other models, and it further decreases when
techniques like quantization are applied to reduce the size and
latency of the models. While achieving high speed on different
hardware, when implemented on the Jetson Nano using the
TensorRT framework, the YOLOX Nano appears slower than
the YOLOv8 Nano.

Our experiments with the dataset and various hardware
led us to select YOLOv8 Nano as the model for conversion
from PyTorch to TensorRT, specifically for running on the
Jetson Nano 2GB in real-life applications. Deploying real-
time applications on the Jetson Nano presents challenges due
to its limited RAM and CUDA cores. Running a model with
an input size of 640x640 consumes a significant amount of
RAM, leading to inference failures or significantly slower
performance. Additionally, the performance is affected by
the input from the camera, especially with high-resolution
cameras that require more RAM for resizing in the pre-
process and post-process methods. To address these issues, we
modified the model by changing the input size from 640x640
to 480x480 for inference. We have also performed a fine-
tuning process to adapt to this input size on the trained model.
With these adjustments, we achieved a frame rate of up to 32
FPS for 720p videos on the Jetson Nano 2GB. However, the
FPS may decrease with higher-resolution cameras, impacting
the pre-processing and post-processing methods. For optimal
performance on this device, a 480p camera resolution is
recommended, though lower resolutions sacrifice detection
range due to information loss in the image.

5

TABLE III
COMPARISON OF INFERENCE SPEED ACROSS DIFFERENT ARCHITECTURES

Method Variant Params (M) MACs (G) Average Inference Speed (ms)
Tesla K80 Intel i9-12900K Jetson Orin Jetson Nano

YOLOv10 Nano 2.839 4.527 12.785 57.568 39.912 131.350
YOLOv8 Nano 3.346 4.862 10.638 41.999 35.262 82.767
YOLOv8 Small 11.174 14.430 21.088 91.008 40.785 111.717
YOLOv8 Medium 25.914 39.692 48.758 199.242 44.255 335.377
YOLOX Nano 0.916 1.328 4.273 15.788 29.959 83.744

RetinaNet Resnet50 34.255 154.598 352.348 3089.883 N/A N/A
Faster R-CNN MobileNetV3-Large 19.457 4.726 45.983 244.619 N/A N/A

V. CONCLUSIONS

In this study, we introduced VTSDB100, the Vietnamese
Traffic Sign Database 100. This database consists of traffic
sign data collected in Ho Chi Minh City, Vietnam. The purpose
of VTSDB100 is to facilitate the application of self-driving
cars in Vietnam. Our experiments have demonstrated the
feasibility of running deep-learning models on IoT devices.
This implementation involves techniques including quantiza-
tion and selecting suitable inputs for IoT devices. Additionally,
we extensively evaluated various deep-learning models for
object detection. This evaluation provides valuable insights for
choosing the most effective method for production purposes.

In future work, we plan to integrate the location of traffic
signs on Google Maps into IoT devices. This integration will
allow for the real-time updating of traffic signs, enabling
drivers to receive notifications about upcoming signs before
they are visible to the camera. Additionally, we will explore
labeling methods such as active learning to reduce the human
effort required.

REFERENCES

[1] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 39, no. 6, pp. 1137–
1149, 2017.

[2] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look
Once: Unified, real-time object detection,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–788.

[3] Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding yolo
series in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[4] R. Del Prete, M. D. Graziano, and A. Renga, “RetinaNet: A deep
learning architecture to achieve a robust wake detector in sar images,”
in 2021 IEEE 6th International Forum on Research and Technology for
Society and Industry (RTSI), 2021, pp. 171–176.

[5] R. Varghese and S. M., “YOLOv8: A novel object detection algorithm
with enhanced performance and robustness,” in 2024 International
Conference on Advances in Data Engineering and Intelligent Computing
Systems (ADICS), 2024, pp. 1–6.

[8] S. Aharon, Louis-Dupont, Ofri Masad, K. Yurkova, Lotem Fridman,
Lkdci, E. Khvedchenya, R. Rubin, N. Bagrov, B. Tymchenko, T. Keren,
A. Zhilko, and Eran-Deci, “Super-Gradients,” 2021. [Online]. Available:
https://zenodo.org/record/7789328

[6] C.-Y. Wang, I.-H. Yeh, and H. Liao, “YOLOv9: Learning what you
want to learn using programmable gradient information,” ArXiv, vol.
abs/2402.13616, 2024. [Online]. Available: https://api.semanticscholar.
org/CorpusID:267770251

[7] A. Wang, H. Chen, L. Liu, K. Chen, Z. Lin, J. Han, and G. Ding,
“YOLOv10: Real-time end-to-end object detection,” ArXiv, vol.
abs/2405.14458, 2024. [Online]. Available: https://api.semanticscholar.
org/CorpusID:269983404

[9] A. F. De Souza, C. Fontana, F. Mutz, T. A. de Oliveira, M. Berger,
A. Forechi, J. de Oliveira Neto, E. de Aguiar, and C. Badue, “Traffic
sign detection with VG-RAM weightless neural networks,” in The 2013
International Joint Conference on Neural Networks (IJCNN), 2013, pp.
1–9.

[10] Z. Zhu, D. Liang, S. Zhang, X. Huang, B. Li, and S. Hu, “Traffic-
sign detection and classification in the wild,” in 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2110–
2118.

[11] D. T. Nguyen, M. K. Phan, P.-N. Tran, and D. N. M. Dang, “Vietnamese
traffic sign recognition using deep learning,” in Proceedings of the 2024
International Conference on Intelligent Information Technology. New
York, NY, USA: Association for Computing Machinery, 2024.

[12] B. Dang Hai, H. D. Nguyen, T. N. Vo, P.-N. Tran, C. T. Nguyen, and
D. N. M. Dang, “Performance comparison in traffic sign recognition
using deep learning,” in Industrial Networks and Intelligent Systems, N.-
S. Vo, D.-B. Ha, and H. Jung, Eds. Cham: Springer Nature Switzerland,
2024, pp. 122–138.

[13] M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Liubimov, “Label
Studio: Data labeling software,” 2020-2022, open source software
available from https://github.com/heartexlabs/label-studio. [Online].
Available: https://github.com/heartexlabs/label-studio

[14] A. Buslaev, V. I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin,
and A. A. Kalinin, “Albumentations: Fast and flexible image
augmentations,” Information, vol. 11, no. 2, 2020. [Online]. Available:
https://www.mdpi.com/2078-2489/11/2/125

[15] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2017, pp.
936–944.

[16] A. Howard, M. Sandler, B. Chen, W. Wang, L.-C. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, “Searching
for MobileNetV3,” in 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), 2019, pp. 1314–1324.

[17] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

6

