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Abstract—Survival analysis plays a critical role in oncology
for patient care, but analyzing Whole Slide Images (WSIs)
presents challenges due to their immense size and inherent
variability. Traditional approaches often rely on manual Region
of Interest (ROI) selection, which introduces subjectivity and
limits scalability. In this paper, we propose Surv-MIL, a novel
deep survival model based on Multiple Instance Learning (MIL)
that processes WSIs without the need for ROI selection. Our
approach divides WSIs into patches, extracts features using
a pre-trained encoder, and then aggregates this information
using a gated attention mechanism. This enables the model to
focus on salient tumor regions while effectively handling the
variability in WSI sizes. Evaluated on a real-world dataset,
our method demonstrates superior performance compared to
other deep survival models. This scalable framework effectively
leverages the rich information contained within WSIs for survival
analysis, potentially leading to improved prognosis prediction and
treatment planning in oncology.

Index Terms—survival analysis, time-to-event analysis, whole
slide image, multiple instance learning

I. INTRODUCTION

Survival analysis (also known as time-to-event analysis)
involves analyzing the time until a specific event occurs (e.g.,
death, disease recurrence). The importance of survival analysis
lies in its ability to predict patient prognosis and provide
crucial information for developing treatment plans tailored to
the corresponding patient. Survival analysis using structured
data has been extensively studied over the years. Efforts to
utilize deep learning in survival analysis have allowed for the
capture of complex relationships that linear models cannot.
Following the success of deep learning in survival analysis
with structured data [1, 2], research expanded to using images
through deep learning models by modifying network architec-
tures [3]. These approaches offer the advantage of handling
diverse data in medical domains and demonstrate the potential
to effectively utilize visual data for survival predictions.

Whole Slide Images (WSIs), obtained from high-resolution
microscopy of tissue specimens, present a rich tapestry of
diagnostic information including color, tissue architecture, cell
morphology, and complex cellular phenotypes [4]. Analysis
of these images unlocks a deeper understanding of cancer
characteristics such as tumor heterogeneity, microenvironment,
and metastatic potential, thus contributing significantly to our
knowledge of cancer progression [5, 6]. However, harnessing

the full potential of WSIs necessitates overcoming certain chal-
lenges: First, their immense size and inherent variability pose
difficulties for traditional neural network architectures (e.g.,
CNNs) that demand fixed input dimensions. Second, accurate
WSI interpretation involves identifying specific patterns across
diverse locations and tissues scattered throughout different
image segments.

To address the challenges of processing WSIs, traditional
methods often rely on either cropping fixed-size regions of
interest (ROIs) from the images [7] or having experts analyze
each WSI to generate tabular data for input. While focusing
on specific ROIs or summary information can simplify tu-
mor analysis, it necessitates highly skilled domain experts to
manually examine each WSI and identify the most relevant
areas [8]. This manual process is not only labor-intensive and
time-consuming but also introduces subjectivity and variability
into the results, as individual experts may have differing inter-
pretations or be prone to fatigue, leading to inconsistencies
in analysis [9]. Therefore, there is a need for a scalable
approach that can effectively handle WSIs of varying sizes,
eliminating the reliance on manual expert analysis and its
inherent limitations.

We propose a novel deep survival model based on multiple
instance learning (MIL) to circumvent the need for ROI selec-
tion or expert manual assessment. Our approach addresses the
challenge of variable WSI sizes by employing a divide-and-
aggregate strategy: WSIs are divided into fixed-size patches,
features are extracted using a pre-trained encoder, and patch-
level features are aggregated with a gated attention mechanism
to focus on salient tumor regions. Through experiments on a
real-world histopathology brain tumor dataset, we demonstrate
that our method outperforms state-of-the-art deep survival
models constrained by fixed input sizes.

II. RELATED WORKS

A. Deep Survival Models

Deep learning-based survival models [1, 2, 10, 11, 12, 13]
have emerged as a powerful alternative to traditional methods
like Cox regression [14] and accelerated failure time models
[15], offering greater flexibility and overcoming limitations
such as linearity and proportional hazard assumptions [16].
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These models primarily focus on capturing complex (non-
linear) relationships between input features and time-to-event
outcomes, enhancing discriminative and predictive power, and
ultimately leading to a better understanding of the underlying
disease progression. For example, DeepSurv [1] captures com-
plex relationships among features utilizing neural networks,
DeepHit [2] provides a direct estimation of time-to-event
distribution to overcome the limitations of the proportional
hazard assumption, DRSA [10] utilizes an RNN structure for
computing hazard estimation as a function of time, and many
others [11, 12, 13]. More recently, deep survival models have
been further utilized to solve other clinical problems such
as longitudinal analysis [17] and treatment effect estimation
[18, 19], but improvements for image-based survival analysis,
particularly with WSIs, remain limited [3, 20].

B. Deep learning models for WSI

Although deep learning has made significant strides in
WSI analysis, existing models often face limitations due
to their reliance on fixed-size inputs and pre-defined ROIs
[3][21]. This restricts their ability to process WSIs at their
full resolution, potentially hindering the extraction of the rich
information contained within WSIs. In survival analysis, deep
survival models such as [3] and SCNN [20] also depend on
pre-specified ROIs. SCNN attempts to overcome the fixed-size
input limitation by randomly cropping patches from the ROI,
but this approach can introduce noise from irrelevant regions,
leading to inefficient training.

MIL has been explored in tasks like classification to address
these challenges. It processes individual instances within a
set and aggregates their information for a set-level prediction,
reducing the computational burden and eliminating the need
for pre-defined ROIs. The core principle of applying the MIL
in WSI analysis is to divide WSIs into patches, compute
patch-level predictions, and aggregate them effectively. For
example, [22] employs an image-level decision fusion model
trained on histograms of patch-level predictions, to predict the
WSI-level label. Similarly, HIPT [23] leverages a hierarchical
transformer-based structure to better capture inter-patch rela-
tionships.

Aligning with these established MIL practices, our method
partitions WSIs into patches and employs attention-based
aggregation to extract relevant information. This approach
distinguishes our work from traditional deep survival mod-
els that rely on pre-defined ROIs, offering a more flexible
and potentially comprehensive analysis of WSIs. Moreover,
by utilizing hazard estimation, we circumvent the restrictive
proportional hazards assumption and address potential model
misspecification, a limitation observed in methods like [3] and
SCNN [20]. To further enhance performance, particularly in
scenarios with limited training data, we leverage components
of the pre-trained HIPT architecture for efficient learning.

III. DEEP SURVIVAL ANALYSIS USING MULTIPLE
INSTANCE LEARNING

A. Survival Data with WSIs

Suppose we are given a discrete-time survival dataset com-
prising N patients, denoted as D = {(xi, τi, δi)}Ni=1. Each
patient i is represented by the input image xi ∈ X where X
is the input space. The image xi for each patient is divided
into non-overlapping patches of size dp × dp, where dp = 256.
There are a total of Ki patches per patient where each patch is
indexed by k ∈ {1, . . . ,Ki}. Therefore, xi = (p1

i , . . . ,p
Ki
i ),

where pk
i represents the k-th patch-level image. In our method,

we use pk
i as input to our image encoder. Additionally, the

observed survival outcomes for each patient are denoted by
τi ∈ T and δi ∈ {0, 1}. Here, τi represents the time until
either the event of interest (e.g., death, cancer relapse) or right-
censoring (e.g., loss to follow-up) occurs, and δi indicates
whether the event is observed (δi = 1) or right-censored
(δi = 0). In our approach, we consider survival time to be
discrete and the overall duration to be limited, establishing
a set of potential survival times as T = {0, . . . , Tmax}. This
range is capped by a predefined maximum value, Tmax.

B. Negative Log-Likelihood Loss

The conditional hazard function, represented as λ : X ×
T → [0, 1], is the immediate risk of an event at a specific
time t given the image x and is defined as λ(t|x) = P(T =
t|T ≥ t,x). Based on the conditional hazard function, we
can define the survival function conditioned on the input x,
denoted as S : X × T → [0, 1], as follows:

S(t|x) = P(T > t|x) =
∏
t′≤t

(1− λ(t′|x)). (1)

The survival function is a non-increasing function with respect
to t, representing the probability that the event will occur after
time t given the input x. Similarly, we can define the risk
function, R : X ×T → [0, 1], which represents the probability
of the event occurring before or at time t given the input x,
i.e., R(t|x) = P(T ≤ t|x) = 1− S(t|x).

Given D, we can estimate the conditional hazard function,
λ̂, by minimizing the negative log-likelihood (NLL) loss:

LNLL =−
N∑
i=1

[
δi log p̂(τi|xi) + (1− δi) log Ŝ(τi|xi)

]

=−
N∑
i=1

[
δi log p̂(τi|p1

i , . . . ,p
Ki
i )

+(1− δi) log Ŝ(τi|p1
i , . . . ,p

Ki
i )

]

(2)

where p̂(t|x) = λ̂(t|x)Ŝ(t − 1|x) represents the estimated
probability of an event occurring at time t, i.e., P(T = t|x).
In this context, (2) leverages two key pieces of information
from the survival data: That is, when the event is observed
(i.e., δi = 1), the event occurred at time τi, whereas when
the event is not observed (i.e., δi = 0), this indicates that the
event will occur after time τi.
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C. Surv-MIL Framework
However, the varying number of patches per sample, due

to differing WSI sizes, makes it challenging to predefine a
maximum value suitable for all Ki. Setting this value too
high may lead to an unnecessarily complex network which
is prone to overfitting, while setting it too low may fail to
accommodate larger WSIs encountered during inference. This
variability makes constructing a deep neural network (DNN)
with conventional architectures (e.g., CNNs) less suitable.
To address this, we propose a novel MIL framework, Surv-
MIL, that combines an image encoder and a hazard estimator.
The image encoder, consisting of a patch encoder and an
aggregator, processes WSIs into sample-level embeddings. An
attention mechanism then prioritizes key diagnostic tumor
regions within these embeddings, regardless of the number
of patches. Finally, the hazard estimator utilizes these embed-
dings to predict the patient risk of having an event of interest
over time.

1) Image Encoder: The image encoder, f : X → Rdz ,
transforms a WSI into a unified sample-level representation
in a dz-dimensional space. It consists of two components: a
patch encoder, fp, and an aggregator, fa. The patch encoder
processes each individual patch within a WSI to derive patch-
level representations. Subsequently, the aggregator combines
these patch-level representations into a single, patient-specific
representation. The final output given xi, represented as z̄i =
f(xi) = fa(fp(p

1
i ), . . . , fp(p

Ki
i )), encapsulates the entire

WSI as a single vector, enabling us to handle WSIs of varying
sizes effectively.

Patch Encoder. The patch encoder, fp : Rdp×dp → Rdz ,
maps each patch from a given WSI to a corresponding
embedding in a dz-dimensional space. In this work, we employ
a pre-trained ViT256−16 encoder in HIPT [23], which is trained
with the DINO [24] framework. This choice allows us to
effectively manage the challenges associated with relatively
small survival datasets. This encoder processes patches by
partitioning each 256×256 patch into non-overlapping 16×16
tokens, augmented with positional embeddings to capture
both local and global information. Hence, utilizing the patch
encoder, we convert each WSI image, xi, comprising Ki

patches, i.e., xi = (p1
i , . . . ,p

Ki
i ), into Ki dz-dimensional

representations, i.e., (z 1
i , . . . , z

Ki
i ) where zki = fp(p

k
i ).

Aggregator. The aggregator, fa :
∏Ki

k=1 Rdz → Rdz ,
integrates a variable number of patch-level representations, i.e.,
(z 1

i , . . . , z
Ki
i ), into a single sample-level embedding, i.e., z̄i,

using an MIL framework. Formally, this can be expressed as:

z̄i = fa(z
1
i , . . . , z

Ki
i ) = fa(fp(p

1
i ), . . . , fp(p

Ki
i )).

For our approach, we choose the gated attention mechanism
(GAM) [25] because it offers two key advantages for WSI
analysis: i) it can effectively focus on important patch-level
information while filtering out irrelevant ones, and ii) it
can adaptively handle the varying number of patches across
different samples.

Leveraging the GAM, we treat each patch as a piece of
evidence contributing to the overall WSI diagnosis. Hence,

the sample-level representation can be computed as a weighted
sum of path-level representations, i.e., z̄i =

∑Ki

k=1 akz
k
i where

the attention weight for each patch is given as

ak=
exp

(
w⊤(tanh (V1z

k⊤
i

)
· σ

(
V2z

k⊤
i

)))
∑Ki

j=1 exp
(
w⊤

(
tanh

(
V1z

j⊤
i

)
· σ

(
V2z

j⊤
i

))) . (3)

Here, w ∈ RL, V1 ∈ RL×dz , and V2 ∈ RL×dz are the
learnable parameters, where we set L to 128. Functions tanh
and σ represent the tanh and sigmoid functions, respectively.

2) Hazard Estimator: The hazard estimator, h : Rdz×T →
[0, 1], predicts the hazard rate at each time point t ∈ T given
the sample-level embedding z̄. Formally, the hazard function
for an input WSI x is expressed as λ̂(τ |x) ≜ h(f(x), t) =
h(z̄, t), which allows us to dynamically capture how the WSI’s
influence on the hazard rate changes over time, enabling the
model to learn complex relationships between the WSI and
the time-to-event outcome. Hence, we can rewrite p̂ and Ŝ as

p̂(τ |x) = h(f(x), t)
∏

t′≤τ−1

(
1− h(f(x), t′)

)
, (4)

Ŝ(τ |x) =
∏
t′≤τ

(
1− h(f(x), t′)

)
. (5)

Overall, the image encoder and the hazard estimator are
trained using the NLL loss, as defined in (6):

LNLL = −
N∑
i=1

[
δi
(
log h(f(xi), τi) +

∑
t′≤τi−1

log(1− h(f(xi), t
′))

)

+ (1− δi)
∑
t′≤τi

log(1− h(f(xi), t
′))

]
.

(6)

IV. EXPERIMENTS

A. Experiment Setup

Datasets. We use a real-world WSI dataset from The
Cancer Genome Atlas (TCGA) [26]. This dataset integrates the
TCGA-LGG cohort with lower-grade gliomas (WHO grades
II and III) and the TCGA-GBM cohort with glioblastomas
(WHO grade IV). Overall, we utilize clinical follow-up infor-
mation for 769 glioma patients, of whom 388 patients (50.5%)
were followed until death and 381 patients (49.5%) were
right-censored. In alignment with the requirements of previous
studies that necessitate fixed-size ROIs, our dataset includes
pre-defined image segments selected by domain experts as
provided in [20]. Overall, the dataset encompasses a total of
1505 image segments, with the number of image segments per
patient varying from 1 to 16.

Benchmarks. We compare Surv-MIL with two commonly
used deep survival models: DeepSurv [1] extends the Cox
model by employing a DNN to predict individual hazard
rates, based on the proportional hazard assumption. DeepHit
[2] is a DNN model that captures the distribution of event
times directly. Unfortunately, we are not able to compare
with SCNN [20], which is a state-of-the-art deep survival
model using fixed-size WSI patches, assuming that domain
experts have pre-identified the most salient ROIs for each
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sample, rather than utilizing the entire image without prior
ROI knowledge. Additionally, the SCNN’s code is not publicly
available, making it impossible to reproduce their results in our
study.

Performance Metrics. We evaluate the risk predictions of
Surv-MIL and those of the benchmarks based on how well
the predictions discriminate among individual risks and how
accurate the predictions are. We utilize the time-dependent
concordance index (CI) [27] as the metric of discriminative
performance. In addition, we use time-dependent Brier-Score
[28] to evaluate the mean squared error of the risk predictions
adjusted for survival analysis. To compare the performance of
survival models at various time points, we select the 25%,
50%, and 75%-percentiles of time-to-event to report time-
dependent CI and Brier-Score, respectively. Higher CI values
indicate better discriminative performance, while lower Brier-
Scores reflect better model calibration and accuracy.

Our experimental setup is as follows: We use a batch size
of 32, with a learning rate of 10−3 for DeepHit and 10−4

for the other models, which are set through hyperparameter
search. The Adam optimizer is employed for training, with
a maximum of 100 epochs. The optimal epoch selection is
based on the validation CIs averaged at 25%, 50%, and 75%
percentiles of time-to-event. After completing all 100 epochs,
the weights from the best-performing epoch according to this
criterion are chosen for evaluation. For a fair comparison, all
models share the same hidden dimension and depth.

Crucially, we leverage the pretrained ViT256−16 encoder
from HIPT to extract vital information from WSI patches.
This ensures a fair comparison by utilizing the same em-
beddings (generated by the frozen pre-trained encoder) across
our method and all the benchmarks. Since benchmark models
are unable to process multiple segments simultaneously and
require ROIs, we randomly select one segment from the ROI-
defined segments for each sample and use it as the input for
benchmark models. During inference, we repeat this process
10 times, averaging the performance across these iterations for
the final result. In contrast, our method can utilize multiple
segments, so it performs training and inference using the
entire segment for each sample. All results are reported by 10
iterations of random 64/16/20 training/validation/testing splits.

B. Experiment Result

Table I shows the discriminative and predictive performance
of each model at the 25%, 50%, and 75% time points,
along with their average. The best performance metrics are
highlighted in bold, while the second-best are underlined for
easy identification. The results in Table I demonstrate that
our proposed method provides significant performance gain
in discriminative performance while providing comparable
predictive performance to the best-performing benchmarks,
highlighting the effectiveness of our approach.

To show that the performance improvement is due to the
effective representation obtained by using our approach and
not due to the changes in how we derive the risk function
(i.e., our hazard estimation), we conduct an ablation study.

TABLE I
TIME-DEPENDENT CI AND BRIER-SCORE

CI
Methods 25% 50% 75% Average

DeepSurv 0.700±0.037 0.724±0.013 0.731±0.017 0.718±0.021
DeepHit 0.681±0.029 0.702±0.039 0.684±0.048 0.689±0.032

Ours (w/o MIL) 0.703±0.039 0.731±0.020 0.737±0.014 0.723±0.021

Ours 0.717±0.036 0.739±0.026 0.743±0.021 0.733±0.025

Brier-Score
Methods 25% 50% 75% Average

DeepSurv 0.132±0.023 0.191±0.012 0.181±0.021 0.168±0.007
DeepHit 0.154±0.036 0.308±0.041 0.428±0.058 0.297±0.037

Ours (w/o MIL) 0.148±0.017 0.196±0.015 0.177±0.011 0.174±0.010

Ours 0.150±0.011 0.192±0.007 0.136±0.013 0.172±0.003

Fig. 1. Survival curves across different WHO Grades

Here, we introduce a variant of our model trained and tested
by randomly selecting a single segment, identical to the other
benchmarks. The performance results of this setup, including
our model without MIL (w/o MIL), are reported in Table
I for comparison. Notably, the discriminative performance
significantly decreases without the MIL framework.

Fig. 1 presents survival curves for various WHO grades,
comparing the Kaplan-Meier (KM) estimates against those
predicted by our model. These curves showcase how well
our model performs across different tumor grades, providing a
visual assessment of its predictive accuracy in relation to the
established KM method.

V. CONCLUSION

We introduce a novel deep learning approach for survival
analysis using WSIs. Our method eliminates the need for fixed-
size inputs and pre-defined ROIs, making it adaptable to WSIs
of any size and removing the reliance on expert knowledge
for tumor region selection. Our approach divides the WSI
into patches and then employs a gated attention mechanism
to combine the patch embeddings, creating a comprehensive
sample-level representation. Experimental results demonstrate
that our method outperforms other models on key metrics,
highlighting its effectiveness in survival analysis tasks.
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