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Abstract—A Graph Neural Network (GNN) is designed to
generate effective node embeddings in graph-structured data.
Therefore, GNNs are well-suited for tasks like node classification
and graph generation. As their use has expanded, concerns about
their security, robustness, and privacy have grown. This paper
explores the various adversarial attacks that can be executed
against GNNs, focusing on poisoning attacks, a specific type of
adversarial attack. We examine key attack strategies and review
recent research developments in each attack. Finally, we conclude
with proposals aimed at enhancing the robustness of GNNs.

Index Terms—Adversarial attack, poisoning attack, GNNs.

I. INTRODUCTION

Graph Neural Networks (GNNs) are highly effective at
generating network representations based on message-passing
algorithms. They excel in representing unstructured network
data, making them particularly suitable for tasks such as node
classification, link prediction, clustering, graph generation,
and physical simulation [1], [2]. Additionally, GNNs possess
remarkable generalization capabilities, enabling them to ef-
fectively manage unseen data during training. This strength
has facilitated their extensive application, extending beyond
network-related domains to a wide array of academic disci-
plines. In this context, concerns about the security of GNN
models in these various domains have arisen, with increasing
emphasis on the need for robustness and privacy [3]. Adver-
sarial attacks, originally developed to evaluate the robustness
of traditional deep neural networks, can similarly be applied
to GNNs, contributing to the development of trustworthy AI
systems. In this paper, we provide an overview of adversarial
attacks applicable to GNNs, with a particular focus on poison-
ing attacks, which are considered the most practical adversarial
attacks in the context of GNNs [4].

II. PRELIMINARIES OF ADVERSARIAL ATTACKS

GNNs are vulnerable to adversarial attacks. The impact of
an adversarial attack can vary depending on the attacker’s
knowledge of the dataset and the trained model. The attacks
can be categorized into three levels, i.e., white-box, gray-box,
and black-box. While white-box attacks might appear unre-
alistic because they involve full access to model parameters,
the adjacency matrix, and labels, they are commonly used to
demonstrate the worst-case scenario under adversarial attacks.
The gray-box attack involves an attacker with framework ac-
cess similar to a white-box attack but with limited knowledge,

Fig. 1. Three types of poisoning attacks on GNNs.

leading to less impact than white-box attacks. In a black-
box attack, the attacker does not have access to the model
parameters but can still interact with parts of the graph dataset,
such as graph structure or specific nodes, and modify these
features.

While there are various types of adversarial attacks, one
that compromises integrity is the poisoning attack. Poisoning
attack stands out for their ability to inject a small amount of
malicious data (such as node) in the training phase, which
can significantly impair the model’s effectiveness. This attack
method is especially applicable to graph mining tasks based
on transductive learning, where the goal is to make predictions
only on a specific set of test instances known at the time
of training. As a result, Poisoning attack is particularly well-
suited for semi-supervised node classification tasks.

III. POISONING ATTACKS ON GRAPH NEURAL NETWORKS

Representative adversarial attacks resulting from poisoning
attacks include graph manipulation attacks, node injection
attacks, and backdoor attacks, as shown in Fig 1.

A. Graph Manipulation

Recently, many studies on poisoning-based adversarial at-
tacks have focused on manipulating the graph structure. These
approaches often involve adding/deleting specific edges, or
revising node attributes. Many existing types of research have
altered the graph structure by adding or deleting edges and
modifying node attributes to induce errors in node labeling
tasks [5], [6]. However, the study [7] introduced a different
approach by applying a deep reinforcement learning-based
rewiring operation. In this rewiring operation, the graph retains
the same number of edges and nodes, and its total degree
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remains constant. The operation makes only minor adjustments
to the first few eigenvalues of the graph’s adjacency matrix,
making the adversarial perturbations unnoticeable.

B. Node Injection
Node injection is performed by adding only malicious nodes

without affecting the existing edges or node attributes. The
authors in [8] proposed Node Injection Poisoning Attacks
(NIPA), which involve adding fake nodes. They use a hi-
erarchical reinforcement learning approach for the objective
function. This reinforcement learning approach is inspired by
RL-S2V [9], which was proposed for evasion attacks and
has been further developed into a hierarchical Q-network to
enhance efficiency in the search process. In addition, ongo-
ing research aims to ensure that attacks can be effectively
executed even under challenging conditions. For instance,
the authors in [10] proposed Graph-Attack Advanced Actor-
Critic (GA2C), a method for performing node injection in
a black-box setting with restricted graph information. This
approach demonstrated superior results using the advantage
actor-critic algorithm. In the same context, the Generalizable
Node Injection Attack model (G-NIA) [11] focused on scal-
ability by performing node injection with just a single node,
drastically reducing the cost of the attack. Recently, the authors
in [12] proposed Node Injection for Class-specific Network
Poisoning (NICKI) that implemented a two-phase learning
process: the first phase learns the node representation, while
the second phase generates the features and edges of the
injected nodes. It was observed that unlike previous baseline
models such as NIPA [8] and Approximate Fast Gradient Sign
Method (AFGSM) [13], where performance did not improve
with larger budgets for edge and feature perturbations, NICKI
showed improved attack performance as the budget increased.

C. Graph Backdoor
A graph backdoor attack is one of the most recently studied

areas among the three types of poisoning attacks. This attack
is executed by injecting a backdoor trigger into the training
set, which can be either an attribute of a single node or a
subgraph that aligns with a predefined pattern. In a recent
study, the authors in [14] proposed a Semantic Backdoor
Attack against GCNs (SBAG), which is a black-box semantic
backdoor attack on GCNs. In SBAG, a specific type of node
is used as the backdoor trigger, and when this backdoor is
activated, the GCN misclassifies the target. Specifically, SBAG
inserts the backdoor through a two-step process right before
training: in the first step, it selects a semantic trigger node,
and in the second step, it generates poisoning samples by
selecting samples with the top-k scores. The study observed
that the backdoor was successfully activated with high prob-
ability across four datasets—AIDS, NCI1, PROTEINS, and
ENZYMES—and maintained a high success rate even when
the poisoning rate was as low as 5%.

IV. CONCLUSION

In this paper, we explored key poisoning attack strategies,
including graph manipulation, node injection, and graph back-

door attacks, while reviewing current research trends. Nowa-
days, in response to such attacks, researchers are developing
trustworthy AI across various industries. However, deploying
trustworthy GNNs in real-world applications remains chal-
lenging. Notably, adversarial attacks may be leveraged during
the pre-training of GNNs, leading to the incorporation of
graph backdoor attacks following fine-tuning. Furthermore, as
adversarial attacks increasingly attempt to perturb models by
introducing label noise, ongoing research is required to de-
velop GNNs robust to label noise for real-world applications.
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