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Abstract—This paper introduces a novel serverless Federated
Learning (FL) framework designed for multi-cell environments,
addressing the significant limitations of traditional centralized FL
methods, especially in dynamic settings with frequent test-time
distribution shifts. Unlike conventional FL approaches that rely
on a central cloud server, our framework decentralizes model
training and aggregation entirely to edge servers, thereby reduc-
ing communication latency, improving scalability, and enhancing
data privacy. The proposed framework incorporates additional
hyperparameters of α and β to control the tradeoff between
personalization and generalization for the model aggregation pro-
cess, while ensuring robust performances in out-of-distribution
(OOD) tasks. Furthermore, the framework exhibits adaptability
across varying numbers of clients in overlapping regions, making
it a scalable and effective solution for real-world FL applications
in environments with diverse and unreliable connectivity. Exper-
imental results on the CIFAR-10 dataset demonstrate that our
framework outperforms existing serverless and centralized FL
methods, achieving superior personalization and accuracy even
under challenging conditions.

Index Terms—Federated learning, Split learning, Personal
model training

I. INTRODUCTION

Traditional deep learning (DL) algorithms have predom-
inantly employed a centralized learning (CL) architecture,
wherein a central server collects users’ data for model training.
While this methodology has been instrumental in developing
high-performance models, it is accompanied by significant
limitations, particularly in terms of communication cost and
privacy concerns [1]. The substantial communication overhead
and the risk of data breaches inherent in transferring vast
amounts of personal data to a centralized server pose seri-
ous challenges for real-world applications [2]. To overcome
these limitations, distributed learning approaches have been
proposed, such as training models directly on user devices
or utilizing edge servers to distribute the computational load
[3]. With advancements in device capabilities, local training
has emerged as a promising alternative, enabling on-device
model training and thereby addressing the challenges of data
transmission and privacy [4].

Federated Learning (FL) has emerged as a viable approach
for enabling distributed model training by uploading only
model updates, rather than raw data, to a central server, thereby
protecting privacy and significantly reducing communication
overhead [5]. Despite these advantages, the traditional FL
framework, which often relies on a central server for ag-

gregating model updates, introduces new challenges, such as
communication bottlenecks and transmission delays caused
by millions of devices connecting to a single server and
unreliable communication conditions. To mitigate these issues,
hierarchical federated learning (HierFAVG) has been proposed
[7], leveraging multiple edge servers in conjunction with a
cloud server to perform multi-level aggregation of models
before generating a final global model.

Despite the advancements introduced by HierFAVG, the
dependence on a central cloud server still creates communi-
cation bottlenecks on the core network when implementing
FL in hierarchical wireless networks. This limitation has
driven research toward serverless FL as a viable alternative
[8], [9]. This serverless architecture reduces communication
latency and costs, compared to HierFAVG, in environments
with limited or unreliable cloud connectivity. However, the
existing serverless FL approaches have focused on the global
model training without adequately addressing the challenges
posed by test-time distribution shifts, which are prevalent in
real-world scenarios [6]. Additionally, although several studies
proposed the novel FL algorithms which personalize the model
while maintaining the generalization capability at a certain
level [10], these methods frequently depend on cloud-based
aggregation, thereby constraining their applicability in fully
serverless environments [11].

This study proposes a serverless FL framework that in-
troduces key enhancements for improved personalization and
robustness to test-time distribution shifts. By introducing ad-
ditional hyperparameters for the model aggregation process,
our framework achieves high accuracy in personalized tasks
while handling out-of-distribution (OOD) tasks at a certain
level. Unlike traditional methods that rely on cloud-based
aggregation, our approach fully leverages the serverless FL
architecture for the multi-cell system, thereby enhancing the
scalability and adaptability of edge models in diverse and
dynamic environments. This research specifically addresses
the challenges posed by dynamic, real-world settings where
test-time distribution shifts are prevalent.

II. SYSTEM MODEL

A. Federated Learning in Multi-Cell Scenarios

HierFAVG [7] is an advanced extension of traditional FL,
designed to address the communication and scalability chal-
lenges in large-scale distributed learning systems. In conven-
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tional FL, a central cloud server aggregates models trained
locally on clients’ devices, however, this centralized approach
introduces significant communication overheads and latency,
particularly in geographically expansive environments. Hier-
FAVG mitigates these challenges by introducing an intermedi-
ate layer of edge servers (ESs) between clients and the cloud
server. This hierarchical structure reduces the communication
load on the cloud server, speeding up the training particularly
in environments with a large number of clients.

Despite these advantages, HierFAVG’s reliance on a central
cloud server still presents potential bottlenecks in commu-
nication and privacy risks. To overcome these limitations,
we leverage a serverless FL framework in the multi-cell
system with overlapping areas, FedMes [9]. This serverless
architecture not only reduces communication latency but also
enhances scalability by keeping all data and model updates
localized at the edge. The elimination of the cloud server also
simplifies the system architecture, making it more robust and
adaptable to environments with limited or unreliable cloud
connectivity. Also, FedMes leverages handover regions in the
wireless cellular system to make cooperation among adjacent
cells even without collaborations among ESs.

Suppose that there are M ESs and K clients, and each client
k has a local dataset Dk. The ES and client sets are defined
as M ≜ {1, · · · ,M} and K ≜ {1, · · · ,K}, respectively. In
the coverage region of each ES i, there are Ki clients and
their set is Ki ≜ {1, · · · ,K1}. The nonoverlapped area of ES
i and its area overlapped with neighboring ESs are denoted by
Ni and Oi, respectively. Also, the set of ESs associated with
the clients in the overlapped area, i.e., clients k ∈ ∪M

i=1Oi, is
denoted by Sk. The goal of FL is to train a global model w∗

which minimizes the following global loss function:

min
w

F (w) = min
w

K∑
k=1

|Dk|∑K
j=1 |Dj |

Fk(w), (1)

where Fk(w) is the local loss function of client k, defined as
Fk(w) = 1

|Dk|
∑

(x,y)∈Dk
ℓ(fw(x), y). Here, ℓ(·, ·) represents

the loss function (e.g., cross-entropy loss), and fw(x) is the
model’s prediction with w for input x whose label is y.

B. Personalization and Test-Time Distribution Shifts

In this paper, each cell has a specific primary task that
is closely aligned with the personalized needs of the clients
within that cell. Our approach ensures that the edge models
are highly optimized for the main task, delivering a tailored
experience that effectively meets the specific requirements
of the clients. However, this strong focus on personalization
could introduce potential vulnerabilities in OOD tasks. In other
words, the limited number of classes can be found in the
coverage area of a single ES, and in particular, the clients
in the overlapped area can have the training data with any
classes among the primary classes of all of the neighboring
ESs. For instance, consider a scenario where cell i is primarily
responsible for classifying images labeled {0, 1, 2}, while an
adjacent cell j specializes in labels {3, 4, 5}. In the overlapping

region between cell i and cell j, a client’s primary classes are
originally from cell j could move into cell i, and then the tasks
related to labels {3, 4, 5} will appear in cell i. Consequently,
the edge model of ES i, which has been primarily optimized
for labels {0, 1, 2}, may struggle to provide accurate inferences
for this OOD data.

This situation is further complicated in dynamic environ-
ments where user mobility is common, and clients frequently
move between cells with different main tasks. Without appro-
priate adjustments, the edge model could fail to generalize
well to these unexpected tasks, leading to a degradation in
performance. In this regard, we consider the test scenario in
which the majority of test samples are from the primary classes
and the remaining samples have the OOD classes. We denote
the ratio of the number of test samples with primary tasks to
the total size of the test dataset by ρ.

III. SERVERLESS FEDERATED LEARNING IN MULTI-CELL
SCENARIOS

In this section, we describe the detailed descriptions of our
proposed serverless FL algorithm in multi-cell scenarios. This
framework extends the FedMes [9] algorithm by introducing
additional hyperparameters to improve the personalization
capability and robustness to test-time distribution shifts.

A. Local Training

At the beginning of the FL algorithm, we suppose that
the local models of all clients are identically initialized, i.e.,
wk(0) = w0 for all k ∈ Ki and i ∈ M, where w

(i)
k (t) is the

local model of client k in the region of ES i at local epoch
t. Then, each client performs the local training process for E
epochs which minimizes the local loss function, as follows:

w
(i)
k (t+ 1) ← w

(i)
k (t)− ηt∇Fk(w

(i)
k (t)), (2)

where ηt is the learning rate at epoch t.

B. Model Aggregation

After completing E local updates, each client k sends its
locally updated model, i.e., w(i)

k (E), back to the corresponding
ES. Once the updated models are received from all clients, the
ES performs the model aggregation process with the additional
hyperparameter α, as given by

w̄(i)(t) ← 1

(1 + α)

∑
k∈Ni

|Ni|
|Ni|+ |Oi|

w
(i)
k (t)

+
α

(1 + α)

∑
k∈Oi

|Oi|
|Ni|+ |Oi|

w
(i)
k (t), (3)

for every E local epochs, i.e., t | E = 0, where w̄(i)(t) is the
aggregated model of ES i after t local epochs. For clients in
non-overlapping regions, the ES assigns a weight of 1

1+α to the
model updates, where α is a parameter that reflects the relative
importance of models from overlapping regions. Conversely,
for clients in overlapping regions, the ES assigns a weight of
α

1+α to the received model updates. This approach ensures that
the non-overlapping regions, which are more representative
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of the cell’s primary task, exert a stronger influence on the
aggregated edge model, while still incorporating essential in-
formation from the overlapping regions to maintain robustness
against OOD tasks.

C. Initial Model Setting

For the next communication round, the parameter server
of the traditional FL broadcasts the aggregated model to all
clients; however, in our algorithm, the clients in the nonover-
lapped area only set their local modes by the aggregated
model, i.e., w(i)

k (t) ← w̄(i)(t) for all k ∈ Ni and i ∈ M.
On the other hand, client k in the overlapped area can receive
multiple models from all neighboring ESs i ∈ Sk. Clients in
the overlapped area can be the bridge for sharing information
between adjacent ESs, but each ES still wants to personalize its
own model to the main tasks rather than OOD tasks; therefore,
each client k in the overlapped area trains multiple models,
each tailored to the main tasks of one of the neighboring ES.
In other words, client k first receives the aggregated models
w̄(i)(t) from ESs i ∈ Sk, generates multiple initial models
w

(i)
k (t) for different ESs i ∈ Sk, and trains multiple local

models independently. Here, the initial model of client k for
ES i is obtained by

w
(i)
k (t) ={
w̄(i)(t) for k ∈ Ni

1
(1+β)w̄

(i)(t) + β
(1+β)

∑
j∈Sk\{i}

w̄(j)(t)
|Sk|−1 for k ∈ Oi

.

(4)

This mechanism enables each client to integrate information
from the adjacent ES, thereby enhancing the resilience of
the edge model to OOD tasks. Afterwards, client k performs
the local training process by (2). In particular, client k in
the overlapped area separately trains local models for all
neighboring ESs i ∈ Sk. After T local epochs, each ES i

has the finally aggregated model w̄(i)
f = w̄(i)(T ). The details

of the proposed algorithm is described in Algorithm 1.

IV. EXPERIMENTAL RESULTS

This section presents the experimental results of our model
evaluated on the CIFAR-10 dataset [12], which consists of ten
classes but we only utilized nine classes for the experiments.
The dataset was partitioned into 50,000 training samples and
10,000 test samples. We employed a convolutional neural
network (CNN) architecture consisting of 2 convolutional
layers followed by 2 fully connected layers, resulting in a
total of 2,155,977 trainable parameters. All client models were
initialized with the same random seed to ensure consistency
across experiments. For local model updates, we utilized mini-
batch Stochastic Gradient Descent (SGD) with a batch size of
10, applying a weight decay of 10−4 and a momentum of
0.9. The learning rate was initialized at 0.001 and decayed
by a factor of 0.995 after each communication round. Each
communication round comprised E = 5 local epochs, with the
entire set of experiments conducted over 600 communication
rounds.

Algorithm 1 Multi-cell FL

Input: Initial model w0

Output: Final global model wf (T ) and edge model
w

(i)
f (T )

Set w(i)
k (0) = w0 for all ESs i ∈ M and k ∈ Ki

for each local epoch t ∈ {0, 1, . . . , T − 1} do
for each client k ∈ {1, 2, . . . ,K} in parallel do

for i ∈ Sk do
w

(i)
k (t+ 1) ← w

(i)
k (t)− ηt∇Fk(w

(i)
k (t))

end for
end for
if t | E = 0 then

for each ES i ∈ M in parallel do
w̄(i)(t) ← 1

(1+α)

∑
k∈Ni

|Ni|
|Ni|+|Oi|w

(i)
k (t)

+ α
(1+α)

∑
k∈Oi

|Oi|
|Ni|+|Oi|w

(i)
k (t)

ES i broadcasts w̄(i)(t) to clients k ∈ Ki

end for
for each client k ∈ {1, 2, . . . ,K} in parallel do

if k ∈ ∪M
i=1Ni then

w
(i)
k (t) ← w̄(i)(t)

else
w

(i)
k (t) ← 1

(1+β)w̄
(i)(t)

+ β
(1+β)

∑
j∈Sk\{i}

w̄(j)(t)
|Sk|−1

end if
end for

end if
end for

Fig. 1: The cell topology configured for the experiments.

A. Experimental Environment

We consider a cellular architecture consisting of M = 3 ESs
and a total of K = 144 clients. For simplicity, we assume that
the overlapped areas of only two adjacent ESs are considered,
as shown in Fig. 1, |N1| = |N2| = |N3| = u clients in
non-overlapping regions, and |O1,2| = |O2,3| = |O3,1| = v
clients in overlapping regions, where Oi,j is the overlapping
area of cells i and j. To differentiate the main and OOD tasks
for each cell, classes {0, 1, 2} are assigned to cell 1 as main
tasks, and cell 2 and cell 3 have the main classes of {3, 4, 5}
and {6, 7, 8}, respectively. Each client randomly chooses two
classes from their respective cell’s main tasks for its training
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dataset. For instance, clients in cell 1 can have data distributed
across three combinations: {0, 1}, {1, 2}, and {2, 0}. On the
other hand, half of the clients within the overlapping area of
two ESs choose their main classes from the main classes of one
ES, and the other half choose their main classes from the main
classes of the other ES. For example, in the overlapping region
O1,2, a half of clients have the main tasks among {0, 1}, {1, 2}
and {2, 0} from the main classes of cell 1, and the remaining
ones have the main classes among {3, 4}, {4, 5}, {5, 3} from
the main classes of cell 2. Here, u = 36 and v = 12 are used
unless otherwise noted.

To evaluate the performance of the proposed method, we
compared it with several baselines: HierFAVG [7], ES-FL
(ES-based FL), and FedMes [9]. For the HierFAVG, edge
aggregation was performed every 5 local epochs, and cloud
aggregation was carried out after every 5 edge aggregations.
ES-FL refers to a scenario where each ES independently
conducts FedAvg [1] without intercommunication between
ESs. FedMes, originally designed to mitigate the propagation
delays caused by communications with a central cloud server,
has primarily focused on training a global model to pursue
the generalization capability. Since HierFAVG and ES-FL do
not utilize overlapping regions, experiments for these methods
were conducted with u = 42 and v = 0, ensuring that the main
tasks across cells did not overlap. The proposed algorithm,
FedMes, ES-FL do not generate a global model; therefore,
we evaluate the final models of ESs individually and calculate
the average performance. Although FedMes does not utilize
the central server during the training phase, the authors of [9]
allow the aggregation of the final models of all ESs at the end
of the training. Accordingly, we also compare our method with
the global models of FedMes as well as HierFAVG.

B. Test Accuracy Versus Global Round

Fig. 2 presents the test accuracy performances over com-
munication rounds with different ρ values. Recall that ρ is the
ratio of the number of test samples with main classes to the
total size of the test dataset. We observe that the proposed
scheme with appropriate values of α and β outperforms all
the baselines. Although the proposed scheme with α or β
only also shows better performances than FedMes and ES-
FL, we note that utilization of both α and β improves the
accuracy more. Here, the performance of FedMes is obtained
by taking averages of the accuracy of every ES; therefore,
the proposed scheme, FedMes, and ES-FL show the improved
accuracy as ρ grows. On the other hand, since HierFAVG
trains a global model, its accuracy does not change with ρ.
Accordingly, ㅅhe performance improvement of the proposed
technique compared to HierFAVG increases as the ρ value
grows.

C. Test Accuracy Versus Test-set Distribution

In Fig. 3, the test accuracy of the baselines for different ρ
values is shown. Here, we note that all the schemes that train
a single global model for the generalization capability, i.e.,
the global model of the proposed scheme, HierFAVG, and the

(a) Main/Total (ρ) = 0.7

(b) Main/Total (ρ) = 0.6

Fig. 2: The accuracy of the model per round when the
proportion of Main tasks in the overall test set is (a) 60%
and (b) 70%.

Fig. 3: Accuracy of the models with respect to changes in the
distribution of the test set.

global model of FedMes, maintain the accuracy at a similar
level. On the other hand, the baselines that allow each ES to
train its personalized model, i.e., the proposed scheme, ES-FL,
and FedMes, show an increasing trend of the test accuracy with
ρ values. In any cases, we can realize that the proposed scheme
using both α and β outperform the baselines for most of ρ
values, except for the case of ρ ≈ 1.0, because the proposed
scheme is designed for handling the OOD tasks. However, we
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(a) Round vs. Accuracy

(b) Main/Total vs. Accuracy

Fig. 4: Accuracy results of the edge model with respect to
changes in the number of clients in the overlapped region.

can argue that in the potential test scenario where the majority
of the test samples are from the main classes, the proposed
scheme always shows the best performance and the decrease
of the accuracy compared to ES-FL is not significant even
when ρ = 1.0 indicating no OOD tasks in the test time.

D. Impact of the number of clients in overlapped regions

We then investigated the impact of the number of clients
in overlapped areas on the test accuracy of the proposed
scheme in Fig. 4. In particular, ρ = 0.7 is assumed in
Fig. 4a. As described in Fig. 1, the numbers of clients in
the nonoverlapped and overlapped areas of a single cell are
denoted by u and v, respectively. In both Figs. 4a and 4b, we
observe that the test accuracy is not significantly degraded as v
decreases, achieving the applicability of the proposed scheme
to the real-world scenario. In Fig. 4b, a slight decrease of the
accuracy with v is observed when ρ is high; however, this is
not significant, and the test accuracy is not degraded at all
with 25% of clients in the overlapped area only.

V. CONCLUSION

This paper proposes a serverless FL algorithm with hy-
perparameters that can control the tradeoff between person-
alization and generalization, specifically designed for multi-

cell environments. In addition, we design the model aggre-
gation process for achieving the robustness to the test-time
distribution shifts. Experimental results on the CIFAR-10
dataset demonstrate that our proposed serverless FL frame-
work outperforms the existing centralized and distributed FL
approaches. Furthermore, the proposed scheme personalizes
the model of the ES to its main classes while providing the
generalization capability at a certain level to handle the OOD
tasks. Although the proposed scheme leverages the handover
region of the wireless cellular network to allow cooperations
among neighboring ESs even without a central server, our
approach is not sensitive to the number of the overlapped
region.
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