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Abstract—This paper explores the use of Artificial Intelligence
(AI) techniques for collaborative path planning in Maritime
Autonomous Surface Ships (MASS). To improve both safety and
efficiency in navigation, path planning is enhanced with AI-driven
approaches that align with International Regulations for Prevent-
ing Collisions at Sea (COLREGs) set forth by the International
Maritime Organization (IMO). The challenges of path planning,
both at global and local levels, are addressed to emphasize
the role of the cooperation among vessels in optimizing the
AI performance. Furthermore, various cooperative frameworks
are discussed by focusing on technical aspects, such as sharing
positional and control data between vessels, and by developing
advanced message-passing methods to enhance real-time naviga-
tion accuracy. Finally, a feasibility study is investigated presented,
showing the potential of AI-based cooperative strategies to lower
collision risks and boost the maritime navigation effectiveness.

I. INTRODUCTION

The growth of global economy continues to lead a rapid
increase in the scale of the international trade [1]. This expan-
sion has driven the demand for maritime transport services [2].
A large number of vessels have their own various paths over
coastal areas, potentially resulting in bottlenecks in waterways
[3]. Furthermore, the congestion caused by route overlaps
increases the risk of collisions, thus slowing down the global
ocean traffic. The international maritime organization (IMO)
has established a set of safety rules for collision avoidance,
known as convention on the international regulations for
preventing collisions at sea (COLREGs) [4] [5]. These rules
serve as guidelines for navigation, ensuring that, when two
vessels encounter each other, they take appropriate collision
avoidance actions by recognizing their positions and paths.

A vessel navigates according to a route schedule obtained
through path planning. Path planning finds a feasible course
from origin to destination with the consideration of maritime
obstacles and legal requirements [7]. As a result, a large
number of vessels navigate along various paths in coastal
areas, which can incur bottlenecks in waterways [6]. MASS
relies on situational awareness (SA) to support path planning
[7]. SA involves gathering accurate information about the
surrounding terrain and the movements of nearby vessels,
along with control details like thrust and rudder angle. MASS
uses a data-driven approach, supported by artificial intelligence
(AI), to obtain control information for path planning [2], [8],

[9]. AI analyzes real-time SA data to find paths that help the
vessel avoid collisions with other vessels [10].

Multiple MASS via the cooperation through the exchange of
SA lead to the enhancement of path planning among individual
MASS [11]. MASS can obtain location and control informa-
tion from other vessels by sharing SA in real-time to update the
SA information with details about nearby obstacles and vessel
positions. The cooperative path planning strategies have inves-
tigated the collaborative maritime operations to enhance SA
[2], [11], [12]. The exchange of the location data enhances the
vessel coordination [13]. Furthermore, the sharing of control
information develops additionally detailed understanding of
the operational environment [14]. The exchange of messages
that incorporate both location and control information offers
a balanced approach to cooperative maritime operations.

This paper presents AI-based cooperation policies that en-
able the MASS navigation to comply with COLREGs. The
paper consists of the following content. It investigates vessel
dynamics, explaining the principles of collision avoidance and
providing a detailed analysis about COLREGs. It then con-
ducts a comprehensive review of AI techniques pertinent to the
conceptualization of local and global path planning. The study
further delves into various cooperative frameworks designed
to enhance SA, offering a evaluation of these systems. Finally,
the paper presents a case study about the implementation of
cooperative frameworks followed by concluding remarks about
the realistic deployment.

II. AUTONOMOUS NAVIGATION

Understanding vessel dynamics is necessary for path plan-
ning and cooperation among vessels. This section introduces
the fundamental theory of vessel dynamics. In addition, the
international regulations for ocean traffic of vessels are pre-
sented, which are key components for developing AI-assisted
MASS navigation techniques.

A. Vessel dynamics

The dynamics of the vessel is determined by several phys-
ical features, such as locations, controls, and geographical
configurations [15]. A vessel moves through a control input of
the thrust and the rudder angle, represented by a vector τ . The
location of a vessel is updated according to the control input.
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The location vector η consists of two-dimensional coordinates
x, y and heading angle ψ as η = [x, y, ψ]T . This vector η is
referred to as the location information of SA and is obtained
with respect to earth-fixed reference frame defined by latitude
and longitude coordinates. Furthermore, the velocity vector v
is characterized by surge velocity u, sway velocity, v, and yaw
rate r as v = [u, v, r]T , which is evaluated with respect to the
body-fixed frame, a coordinate system attached to itself. Since
η and v are defined with respect to different coordinates, a
transformation is necessary to align them in the same reference
frame. This can be achieved by using a rotation matrix T(ψ)
for a given vessel heading angle ψ, which is defined as

T(ψ) =



cosψ − sinψ 0
sinψ cosψ 0
0 0 1


 . (1)

The time derivative of the location obtains the velocity as

η̇ = T(ψ)v. (2)

Therefore, the temporal change of η can be accurately esti-
mated from the transformed velocity vector, and the resulting
displacement and the position of the vessel are predicted.

Furthermore, several forces including Coriolis force, cen-
tripetal forces, drag, friction, buoyancy, and gravity are exerted
together to the vessel when control input τ is applied. The
resulting dynamics is described as [15]

Mv̇ +C(v)v +D(v)v + g(η) = Bτ , (3)

where M is the mass and inertia matrix of the vessel that
represents the resistance to changes in motion, C(v) stands
for the Coriolis and centripetal forces for a given velocity
vector v, D(v) indicates the resistive force that includes drag
and friction, g(η) denotes the restoring forces originating
from gravity and buoyancy helping maintain the stability, and
the control allocation matrix B converts the control input τ
into forces and moments that act on the vessel. As a result,
the acceleration of the vessel v̇ can be computed based on
the current location information vectors together with control
input τ . Once the acceleration is calculated, the change in
velocity can be obtained and the velocity updates are available.
Plugging this updated velocity into (2), the vessel position
updates made during the unit time step are calculated. By
repeating this calculation, the overall motion of the vessel can
be accurately described and controlled in response to the input
and the current location.

B. Collision avoidance

For the purpose of navigation safety, collision avoidance
techniques are essentially required for the design of the
MASS path planning algorithm. Maritime navigation plans
normally comply with COLREGs established by IMO [4], [5].
COLREGs include 41 fundamental collision avoidance rules
divided into six different categories, such as steering, sailing,
sound, and light signals [9]. Fig. 2 illustrates several important
rules relevant to collision avoidance, which are summarized as
in the following.

Fig. 1: Vessel control model for collision avoidance event.

Fig. 2: Encounter situations described by COLREGs.

• Overtaking (Rule 13): Any vessel overtaking another
must keep out of the way of the vessel being overtaken.

• Head-on situation (Rule 14): Each vessel must alter its
course to starboard to pass on the port side of the other.

• Crossing situation (Rule 15): The vessel with the other
on its own starboard side must keep out of the way.

• Actions by give-way vessel (Rule 16): Early and sub-
stantial action is required to ensure a safe distance is
maintained.

• Actions by stand-on vessel (Rule 17): The stand-on
vessel should maintain its course and speed, but can take
evasive action if the other vessel does not comply with
COLREGs.

These rules provide the foundation of safe and compliant
vessel controls for autonomous navigation systems. Adhering
to these guidelines, autonomous vessels can navigate complex
maritime environments while minimizing the risk of collisions.

The compliance of COLREGs is normally assessed in terms
of two risk indicators about the occurrence of collision events:
closest point of approach (CPA) and collision risk index (CRI)
[10]. CPA measures the distance between the closest points
that two vessels approach when they stick to their current
paths. Also, CRI offers comprehensive assessment by incor-
porating distance and time information. For the evaluation, it
is necessary to leverage additional parameters such as time
closest point of approach (TCPA) and distance closest point
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of approach (DCPA). TCPA is the time until one vessel main-
taining the current path reaches the closest point to the other
vessel, while DCPA is the corresponding distance between
two vessels on the closest points. Most collision avoidance
techniques determine control output τ by minimizing some
aggregated functions of these two risk indices.

III. PATH PLANNING OF MASS

The MASS path planning task targets to obtain a series of
location and control vectors that the vessel should process at
individual time instants. According to the time scale and the
navigation range, the MASS path planning is classified into
global path planning and local path planning [16]. Global path
planning determines a long-term navigation path by identifying
waypoints that interconnect origin and destination positions.
By contrast, in the local path planning, detailed trajectories
between two waypoints are found by optimizing short-term
MASS movement features, e.g., speeds and heading angles.
This section reviews several path planing approaches based
on global and local path planning techniques.

A. Global path planning

Efficient global path planning relies on carefully designed
waypoints that satisfy diverse navigation goals, including
travel time/distance minimization, energy consumption, and
safety indicators. Such nested path planning tasks cannot be
addressed directly via existing shortest-path algorithms. To
handle this, automatic identification system (AIS) [17] collects
real-time navigation trajectories, including positions, speeds,
and courses. AI techniques can utilize historical features of
these datasets to enhance the global path planning performance
[18], [19], [20].

Data-driven approaches are useful, in particular, for saving
the energy consumption in global path planning. A number of
difficult-to-measure parameters in marine environments affect
energy usage of vessel. This makes building mathematical
models for prediction challenging. AI techniques can infer
current ocean conditions from historical navigation data in AIS
by using data-driven methods. In [21], the vessel navigation
in the arctic region is focused by developing a neural network
based model. Thick ice in arctic regions renders selecting
waypoints critical and challenging, since vessels cannot pass
over it and fail to navigate the region. This approach analyzes
past data to detect patterns among the ice concentration, vessel
speed, and energy efficiency, finding fuel-efficient and feasible
routes.

Global path planning in regions with significant environ-
mental changes between waypoints demands not only eval-
uating waypoints but also predicting intermediate waypoints.
This dense waypoint setup relies on predicting future positions
of the vessel. A deep neural network (DNN), trained with
turning point data from AIS, predicts these future positions.
A iterative update approach using recurrent neural network
(RNN) [22] is employed to predict the intermediate waypoint.
The fixed waypoint, the expected location the vessel will
reach, is generated using historical data, while a trained long

short-term memory (LSTM) model produces the intermediate
waypoint.

Another factor in the waypoint selection for global path
planning is planned mission of the vessel. The sequence of
waypoints changes depending on the mission, and optimizing
these routes is known as multi-task path optimization. This
problem is approached as a traveling salesman problem, where
the objective is to visit multiple locations efficiently. A self-
organizing map-based DNN [23] is applied to determine
the optimal sequence for visiting water monitoring stations,
minimizing travel time and distance by learning the best order
to visit these stations based on their spatial distribution.

B. Local path planning

Small-scale navigation strategies between waypoints are
designed by the local path planning. Unlike global path
planning that operates with long-term movement features,
finding the local paths heavily relies on real-time dynamics
and surrounding environments. It also needs to capture the
short-term changes incurred by nearby vessels, in particular,
over congested areas, e.g., ports and waterways [24].

Traditional algorithms have mainly focused on sea and
weather conditions and nonlinear vessel dynamics for several
key limitations [25]. High computational complexity arises
when mathematical models for collision avoidance try to
account for numerous variables in real-time, which is challeng-
ing in dynamic environments with multiple vessels. Another
major problem is that many of these traditional algorithms
are built on predefined frameworks that use fixed rules to
handle specific scenarios. These frameworks often rely on
oversimplified assumptions, such as ignoring the variability
in vessel behavior or environmental factors, leading to inac-
curate risk assessments. Most traditional studies address only
single obstacles at a time, and their strategies readily become
impractical in crowded maritime environments.

To address these challenges, the deep reinforcement learning
(DRL) framework can be adopted which employs AI-enabled
agents to determine MASS navigation policies in real time
[26]. Local path planning tasks are formalized as Markov
decision processes. DRL agents are trained to take successful
navigation actions of MASS to maximize rewards regarding
navigation efficiency and safety. Inputs for DRL-based solu-
tions can include any states of overall systems, such as MASS
dynamics and surrounding environments.

A DRL model navigates the vessel by interacting with
its environment in real time, guided by a reward function
[27]. The vessel earns a cumulative reward of reaching its
destination, avoiding collisions, and maintaining a proper
distance from other vessels according to COLREGs [28].
Another approach mainly focuses on assigning different re-
wards according to specific situations of COLREGs [29]. This
approach first identifies a situation of COLREGs to identify
the corresponding valid reward function and, subsequently, the
OS takes an action according to the resulting reward until
the collision alert is resolved. This approach uses a dedicated
DNN that predict a valid situation out of the cases described
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by determine COLREGs from the position information among
the OS and surrounding TSs. The DRL model then learns to
control the vessel according to the situation-specific rewards.
This reward change ensures that the vessel can balance path
planning for dynamic responses to potential collision risks.

When processing the surrounding information, a vessel
encounters many TSs, causing constant fluctuations in the
number of relevant states the AI must handle. Neural net-
works, however, demand a fixed input size, which compli-
cates the solution for multi-vessel encounters. One technique
addresses this challenge by using the last five records of
detected distances to obstacles as input for the DNN [28].
Another technique categorizes TSs into four regions based
on COLREGs, reducing the input dimensions to four [27].
Furthermore, some technique combine long short-term mem-
ory (LSTM) with sequence conditional generative adversarial
networks (GANs) [30]. This approach learns 12 different
vessel encounter patterns from AIS data, which allows to
process surrounding information and make human-like the
navigation for the collision avoidance.

IV. COOPERATIVE MASS NAVIGATION

Vessels require accurate measurement of the information
about nearby TSs to avoid the collision. In case of indepen-
dent operation without direct communication among vessels,
however, individual vessels only have the access to basic
summaries like speed and direction through radar and AIS.
Such incomplete records force the navigation schedule to
assume constant movement of neighboring vessels, thereby
resulting in degraded predictions of TS positions. An advanced
method is the cooperation among vessels through inter-vessel
communication network, so that the information, such as real-
time positions, intended courses, and any modifications to en-
vironmental changes, is shared. This data exchange enhances
SA, maintaining accurate information of the surrounding ter-
rain and the movements of nearby vessels [7]. Enhanced SA
achieves the improvement of vessel coordination.

A simple way to implement cooperation in the collision
avoidance exchanges the position information about real-time
positions, speeds, and courses [13]. This information helps
vessels develop shared understanding of the movements of
other vessels and includes critical risk metrics like the CPA.
Vessels share this data to assess potential collision risks
accurately and make others informed adjustments to their
courses. Another cooperation strategy consists in communi-
cating the control information, including steering intentions,
rudder commands, and speed changes, along with the location
information. Upon sharing these details, vessels understand
planned maneuvers of others to make the informed modifica-
tion to their own courses and speeds to secure safe distances
[14]. Furthermore, vessels can exchange previous trajectories
so that other vessels can predict future movements [12]. Thus,
vessels anticipate and respond to potential collision risks by
altering paths and speeds in a timely manner.

A further enhanced cooperation among vessels involves
the exchange of messages about the latent information that

Fig. 3: Training structure of message-passing path planning
cooperation.

is learned from data point space constructed jointly by lo-
cation and control information. Thus, vessels can exchange
implicitly encoded information in terms of messages so that
their real-time position, speed, course, and intended maneu-
vers are shared with neighboring vessels. Once messages are
exchanged, a vessel combines the received data with its own
observations, using comprehensive inputs to determine next
actions.The integration of the information from nearby vessels
resolves multiple encounters among vessels.

To assure the feasibility of the aforementioned cooperation
principles, an implementation example of realizing the cooper-
ation that exchanges a latent-space encoded message about the
combined location and control information. Fig. 3 illustrates
the structure of the latent-message neural network. At time
slot t, individual vessels make their navigation actions at

based on observations ot that are measured from surrounding
environments. For the cooperation with neighbors, each vessel
generates a message mt with a message-generating network,
denoted by πΘM

with a parameter set ΘM , that takes the obser-
vation ot as the input, and subsequently, this message which
implicitly contains both location and control information in
the latent space is shared with other vessels. The action at is
generated by an action-generating network, denoted by πΘC

with parameter ΘC , that uses both the observation ot and the
received message mt at the input.

To train neural networks of the proposed framework, i.e.,
πΘM

and πΘC
, the proximal policy optimization (PPO) algo-

rithm [31] is utilized. A critic network πΘV
with parameter

ΘV , which estimates the value function of motivation actions
at, is introduced to train the actor networks. This training
technique improves the policy of the vessel to obtain an
improved navigating solution from local observations and
exchanged messages.

Fig. 4. shows the performance comparison between the
training computations with and without the message exchange
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Fig. 4: Performance evaluation between path planning tech-
niques.

in the MASS framework. Vessels move with random headings
and speeds within a 20 km ×20 km region that is enclosed
by a large circular terrain, within which the vessels must
navigate. Each vessel follows a predefined dynamics equation,
as previously described, with specific physical characteristics
such as a length of 200 m, a maximum speed of 17 knots,
and a DCPA of 1 km. The vessels start from random initial
positions within the region, with the goal of reaching des-
ignated waypoints while avoiding collisions and minimizing
travel time. The vertical axis represents the total loss func-
tion, while the horizontal axis shows the number of training
iterations. Note that the message exchange slows down initial
learning speed since the corresponding the network has more
parameters to learn. However, as the computation goes on,
the message exchange secures high and stable rewards. This
indicates that incorporating the message exchange in AI path
planning techniques improves the learning performance, since
the exchanged message contribute to obtain better positions
and higher rewards over times.

V. CONCLUSION

This paper has reviewed AI-driven approaches that support
MASS for the path planning and the collision avoidance in
accordance with COLREGs. The path planning techniques are
normally pursued in two different approaches of global path
planning, which sets a long-distance route across ocean areas,
and local path planning, which focuses on navigating over
coastal areas. To reinforce the path planning strategy with
respect to time-varying and dynamic maritime environment,
cooperative principles can be introduced among vessels. Such
frameworks emphasize sharing location information about
directions, positions, and speeds of vessels, as well as control
information about thrust and rudder angle. To examine the
feasibility of cooperative methods, an AI-based technique that
implicitly encodes both location and control information from
SA results of individual vessels into messages to share over
neighboring vessels is proposed. The simulation results show
that the exchange of compact messages that can provide latent
information enhances the overall performance of training and

inference computations, which sheds a light on potentials for
the reliable MASS navigation.
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