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Abstract—Deep Neural Networks (DNN) are omnipresent in
systems that are developed for processing vast quantities of data,
most particularly images, for tasks such as perception, navigation,
classification, detection, and segmentation. Such DNNs can be
computationally demanding from the high number, upwards to
hundreds of billions, of computations required during execution.
Dynamic Deep Neural Networks (DDNN) are an evolution that
allow the number of computations in a DNN to be scaled down.
However, lacking in DDNN methodologies is the functionality
to control online when and how to scale down the number of
computations. To respond to this need, Adaptive Dynamic Deep
Neural Networks (ADDNN) are an evolving class of deep learning
models used in high performance computing that attempt to
minimize resources usage – memory and power – and latency
while maintaining an acceptable task performance by adapting
the model architecture in response to the current context. Thus,
ADDNNs are a State-of-the-Art evolution that perceive context,
on a case-by-case basis, and adapt the number of computations
to that required by the difficulty of the problem at hand. This
positional paper is not only a survey of current DDNN methods
in literature, but also an analysis into the considerations, design
principles and challenges in developing robust ADDNN systems
and applications.

Index Terms—Dynamic Deep Neural Networks; Computer
Vision, Multi-Branch Neural Networks, Slimmable Deep Neural
Networks; Gated Deep Neural Networks.

I. INTRODUCTION

Deep Neural Networks (DNN) are a class of data-driven
algorithmic models achieving high performance at process-
ing high-dimensional data structures. The most prominent
application of DNNs is computer vision, where the model is
performing tasks such as classification [1], [2], object detection
[3], and segmentation [4]. Such computer vision models can be
further used as perception modules in downstream tasks, for
example as in robotics and autonomy [5]. The functionality
of DNN is based on revealing a large latent feature space,
extracted from the presented data, that encapsulates general-
ized correlations which are then leveraged to process novel
data. This feature space is realized in the form of upwards to
hundreds of billions of trainable model parameters, resulting
in a similar amount of computations required to execute
the DNN. Consequently, large State-of-the-Art (SoA) DNN
models can perform with exceptionally low error rates, even
outperforming humans [6]. However, the maximum number of
feasible computations is limited by the computing resources
available to the computers that are being used to host the DNN.

The standard approach to address the limited computing
resources available in many application settings is model
reduction: a static approach to reduce the computational
overhead required to execute a DNN by directly adjusting its
structure before runtime. The main strategies used to reduce
the computational needs of DNN models are quantization,
direct design and model compaction. Quantization [7]–[9]
transforms high precision floating point numbers (high number
of bits) into low precision ones (low number of bits), reducing
the execution time and memory required to execute a DNN.
Direct design [10] trains a DNN from scratch while employing
methods that force a lower number of parameters from the
beginning. Model compaction is used to reduce the number of
parameters of an already trained model, such as pruning [11]
and knowledge distillation [12]–[14]. The resulting models
typically incur a degradation in task performance. Implemen-
tation optimization directly improves how the neural network
is computed on the processing unit, such as in [15].

In Edge computing [16], [17] in order to reduce the compu-
tational load at mobile devices, the execution of the models is
offloaded to a wirelessly connected compute-capable device.
In this computing paradigm, the mobile device acquires and
compresses the data. The data are then sent to the edge
server, decompressed and fed into the DNN. The critical aspect
of edge computing is the transmission of potentially large
volumes of data over volatile and capacity-constrained com-
munication channels, which leads to issues such as increased
latency, data loss, and security.

Recent methods focus on creating a dynamic computing
framework to reducing the computational load required to
execute a DNN, allowing its structure to be changed after its
design and training, creating what we refer to as a Dynamic
DNN (DDNN). A natural evolution to a DDNN, is to include
the functionality to intelligently decide how and when to
change the structure as to scale down its complexity to only
that required by the situation at hand (that is, the input
data), in what we refer to as an Adaptive DDDN (ADDNN).
The remainder of this paper presents an overview of design
principles, challenges, and applications of both DDNNs and
ADDNNs.

Specifically, a DDNN can be classified as either width
scaling, where the number of computations in each layer is
reduced, or depth scaling, where the number of layers are
reduced. The core challenge in developing a DDNN is how
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Fig. 1. From left to right: (a) the super-network, which is a vanilla DNN, (b) a sub-network activated within the super-network that has scaled down its width
(number of parameters), and (c) a sub-network activated within the super-network that has scaled down its depth (number of layers).

to train a scaled down network that retains accuracy of the
larger network. An ADDNN can be classified as either gated
multi-branch networks, where several branches can control
the computational flow while executing a neural network,
or gated embedded networks, where a subset of weights are
activated and shared by several embedded sub-networks within
the larger super-network. The core challenge in developing an
ADDNN is how to train an intelligent module to control the
gates on a case-by-case basis.

II. DYNAMIC DEEP NEURAL NETWORKS

We define a DDNN primarily by the functionality to change
the structure of a neural network after its construction. For the
purpose of reducing the computational needs of a DNN, we
focus on DDNNs that are able to scale their complexity, which
takes on two forms: width and depth. See Fig 1.

A. Width Scaling

Width scaling reduces the number of parameters used in
each layer of a DNN. Width parameters refer to not only the
number of activation functions (i.e., nodes), but also those that
affect the number of computations required to execute a single
layer, such as the stride and kernel size parameters used to
define a convolutional layer. The most prominent type of width
scaling is rooted in slimmable neural networks [18], [19],
that create sub-networks embedded within a “super-network“,
where each of the sub-networks have a reduced number of
active nodes. This is likened to a controlled form of dropout
[20]; however, in slimmable networks, nodes are disconnected
in a procedural manner rather than randomly such as they are
in dropout.

B. Depth Scaling

Depth scaling reduces the number of layers used in the
DNN. The most prominent type of depth scaling is early
exits [21], in which the network can branch off and complete
execution at an early stage of computing. Early exits provide
a means to reroute the flow of computations while executing a
neural network, where some branches will have fewer layers.

Another powerful application of early exits is to improve
the efficiency of hybrid mobile-edge computing, in what is
called split computing [21], [22]. Part of the neural network is
first executed on-board the mobile device. Second, supervised
compression is used to reduce the dimensions of the resultant
intermediate feature space. Third, the compressed data is then
communicated to the edge server to finish execution of the
neural network. Split computing has been shown to outperform
techniques that use JPEG compression for edge computing.

C. Core Challenges

The main challenge in developing a DDNN lies within the
training procedure. The neural network has to be trained to
dynamically reduce the number of computations executed at
runtime, while mitigating the degradation in accuracy resulting
from using a less complex structure. The main solution to
this challenge is knowledge distillation [12], which has been
used in slimmable networks and split computing [18], [19],
[22]. Knowledge distillation involves first training a teacher
network, that will then teach its learned latent features to a
student network. For slimmable networks, the student network
is a sub-network that is embedded within the super-network
(i.e., having shared weights with other sub-networks) such
that any of the sub-networks can be seamlessly activated
at run time. For split computing, the student network is an
injected bottleneck that learns a compressed representation
of the teacher’s latent features. The loss function used to
train the student model is a linear combination of both a
hard and soft target. The hard target is the desired neural
network output, usually from the same loss function used
to train the teacher network. The soft target is a subset of
the teacher’s latent features. This mitigates a degradation in
accuracy, reduces the size of the student network, and teaches
the student network a representation of the teacher’s latent
features. The key advantage of knowledge distillation, is that
the teacher network is allowed to explore a high-dimensional
feature space during training, while the student network learns
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Fig. 2. A gated multi-branch network, where a switch controls which network
branch to route computing into next.

a compacted representation of this feature space to reduce the
computational overhead used during execution.

III. ADAPTIVE DYNAMIC DEEP NEURAL NETWORKS

We define an ADDNN primarily by the functionality to
intelligently select how and when the structure of a neural
network is changed at runtime. For the purpose of reducing
the computational overhead of a DNN, we focus on ADDNNs
that are used to optimize the resources utilized within a system.
There are two forms of selection for neural structures: gated
multi-branch networks and gated embedded sub-networks.

A. Gated Multi-Branch Networks

Gated multi-branch networks are composed of several inde-
pendent, but possibly intertwined, neural networks. See Fig 2.
By independent, we mean none of the weights, or other
parameters, are shared between networks. By intertwined, we
mean that the output of some branches may cross over into
input to other branches. Each branch can be loaded into the
memory for seamless switching, if the memory capacity allows
it. The task of an ADDNN is then to intelligently select from
the possible branches, as controlled by a gate mechanism.
There are a number of such applications, in which the ADDNN
controls a gated multi-branch neural network with the purpose
of optimizing resource usage: BranchyNet [23] showed that an
early exit model can be trained to improve both inference time
and accuracy for image classification, Testudo [24] considers
wireless communication resources, HydraFusion [25] consid-
ers sensor selection for object detection, Slimmable encoders
[26] consider levels of quantization used in split computing,
and NaviSplit [5] considers the level of compaction needed in
split computing to extract depth maps from a monocular RGB
image for the purpose of autonomous drone navigation.

B. Gated Embedded Networks

Gated embedded networks are composed of one super-
network, with several overlapping sub-networks within said

Fig. 3. A gated embedded network, where gate structures control the
parameters used for sub-sets of layers within the network.

super-network. See Fig 3. By overlapping, we specify that
weights of the super-network are shared within other sub-
networks. The key advantages of gated embedded networks is
that only the super-network, or a sufficent subset of, needs to
be loaded into memory, and a sub-network and can be activated
with a simple matrix multiplication by a binary indicator
matrix. The first examples, to our knowledge, of an ADDNN
using gated embedded networks are dynamic slimmable net-
works [27], [28] which control the amount of slimming (i.e.,
percent of active nodes from the super-network) based on the
difficulty of the image. Recently, NaviSlim [29] was presented
to continuously change the slimming based on the perceived
difficulty in a navigation task for drone autonomy. Uniquely,
not only does NaviSlim control the slimming of the hidden
layer nodes but also of the input layer nodes (as a means of
both sensor and resolution selection).

C. Core Challenges

In both forms of gated networks, multi-branch or embedded,
and across the aforementioned applications, there are some
common design principles and challenges. Of most impor-
tance, is in determining the manner of intelligence used to
select when and how to adjust the overall structure of, or
reroute computations within, the network. This is decided
by several factors, which have non-trivial relationships: (1)
the mechanism used to perceive context on a case-by-case
basis, (2) the resources needed to be optimized and how they
correlate to that context, (3) how changing those resources
will affect task accuracy, and (4) what the required level of
task accuracy is as to avoid system failure and obtain mission
objectives. These relationships can be summarized with the
following minimization problem:

arg min
ϕ

⟨R(fθ, gϕ, D)⟩

s.t. ⟨η(fθ, gϕ, D)⟩ <= β ∗ ⟨η(fθ, D)⟩
(1)

or if reversed:

arg min
ϕ

⟨η(fθ, gϕ, D)⟩

s.t. ⟨R(fθ, gϕ, D)⟩ <= β ∗ ⟨R(fθ, D)⟩
(2)
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where R denotes the resources expended, fθ is the core
task model (a DDNN) that is already trained, gϕ is some
auxiliary mechanism that uses perceived context to select how
to alter the structure of fθ (making it an ADDNN), D is a
provided dataset, η is the task error rate, and β is a constant.
When fθ is used without gϕ, then the system reverts back
to a DNN, using a static amount of resources at all times –
note that in the above minimization problems, we assume the
DNN uses the maximum amount of resources in this case.
Equation 1 minimizes the resources used while maintaining a
required task accuracy. This is preferable for when one knows
the mission objectives, and wants to minimize the resources
expended while accomplishing them. Equation 2 minimizes
the task error while forcing the resources expended to fit within
an upper bound. This is preferable for when one knows the
resource constraints on a limited device, and wants to obtain
the best feasible performance.

The core challenge of developing an ADDNN is in design-
ing and training gϕ. For example, and to this end, Hydrafu-
sion trained a weather context classifier to control the gate
of a multi-branch sensor network, NaviSplit and NaviSlim
trained an auxiliary network with deep reinforcement learning
to perceive the navigation difficulty and allocate resources
accordingly, dynamic slimmable networks trained a classifier
to determine the difficulty of an input image, and BranchyNet
measured the entropy level at several layers to determine when
to early exit based on a learned threshold. Some key difficulties
in training gϕ are:

1) If training both sets of parameters, ϕ and θ, in a dual-
optimization problem, gϕ is attempting to learn how to
alter the structure of fθ while the parameters of fθ are
changing. This can create instabilities while updating ϕ
and θ during their optimization, by creating a game of
tug-of-war where parameters oscillate around eachother.
The solution to this in literature, has been to decouple
the training processes of gϕ and fθ.

2) The high level latent features realized within the param-
eters, θ, may not only be useful for the task that fθ is
being trained for, but also when using gϕ for selecting
the structure of fθ. The paradox observed here, is that
the high level features have already been computed in
fθ and thus if gϕ is to use them as inputs then there
will be diminishing, if not at times unreachable, resource
savings. A unique solution to this in literature [5], [29],
is to consider the data as timeseries so that the next data
instance is highly correlated to the current one. This way,
the high level features computed in fθ can be used by
gϕ to allocate proper resources in the next timestep.

3) If using deep reinforcement learning, training conver-
gence times can be on the magnitude of months [30].
The training time is further exacerbated by how sensitive
deep reinforcement learning algorithms are to selected
hyper parameters, requiring a large grid to be explored.

IV. CONCLUSION

We have demonstrated the evolution of a DNN, which
was originally static in nature with a fixed computational
overhead set at runtime. An evolution to this is a DDNN,
which allows the structure of a DNN to become dynamic
so that the computational overhead can change at runtime.
The State-of-the-Art evolution is an ADDNN, which adds the
functionality to intelligently select how the DDNN should
change its structure to better adapt to context, and fulfill
accuracy and/or resource constraints. The difficulties of train-
ing a DDNN lie within training the task model to have a
smaller computational overhead while mitigating performance
degradation. The difficulties of training an ADDNN lie within
the non-trivial dichotomy between the two systems of the task
model, used to fulfill mission objectives, and the auxiliary
module, used to adapt the computational overhead to perceived
context.
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