

 A Comparative Study on the Effect of Grid Size
and Interpolation Techniques in 3D Shape

Classification with CNN

Abstract— This paper presents a comprehensive study on 3D
shape classification utilizing Convolutional Neural Networks
(CNNs). The research investigates the performance variations
arising from different grid sizes and the application of
interpolation techniques. A systematic analysis is conducted to
determine how these factors influence the accuracy and
efficiency of 3D shape classification. The experiments reveal that
grid size significantly impacts the CNN's ability to accurately
classify shapes with respect to computation time, with larger
grid sizes enhancing classification accuracy and other
performance metrics. When interpolation techniques are
applied, performance metrics further improve, with the highest
grid sizes achieving optimal accuracy, precision, recall, and F1-
score. These findings contribute valuable insights for optimizing
3D shape classification models, demonstrating the crucial roles
of both grid size and interpolation techniques in achieving high
classification accuracy and efficiency in practical applications.

Keywords— Convolutional neural network (CNN); Zoom
Interpolation, 3D Shapes

I. INTRODUCTION
The classification of 3D shapes is a crucial task in various

fields such as computer vision, robotics, medical imaging, and
augmented reality. Accurate classification of 3D shapes
enables applications ranging from object recognition and
scene understanding to the development of autonomous
systems and advanced human-computer interaction interfaces.
Traditional methods for 3D shape classification have relied
heavily on handcrafted features and geometric descriptors,
which often require extensive domain knowledge and can be
sensitive to noise and variations in the data.

With the advent of deep learning, Convolutional Neural
Networks (CNNs) have emerged as a powerful tool for image
classification, demonstrating remarkable performance across
a wide range of tasks. CNNs are particularly well-suited for
handling the spatial hierarchies in visual data, making them an
attractive option for 3D shape classification. However, the
direct application of CNNs to 3D data presents several
challenges due to the inherent complexity and high
dimensionality of 3D shapes.

A common approach to mitigate these challenges involves
representing 3D shapes as voxel grids or multi-view
projections, allowing CNNs to process the data in a format
similar to 2D images. This study focuses on the voxel grid
representation of 3D shapes, wherein the shapes are
discretized into a 3D grid of binary or occupancy values. The
resolution of this grid, referred to as the grid size, plays a
critical role in determining the balance between computational
efficiency and the preservation of shape details.

This research aims to provide a comprehensive analysis of
the impact of different grid sizes on the performance of CNN-
based 3D shape classification. Additionally, the study
examines the role of interpolation techniques in enhancing
classification accuracy by addressing the loss of spatial
information that occurs during the discretization process.
Interpolation techniques can potentially improve the
representation of 3D shapes by filling in gaps and smoothing
out irregularities, thereby aiding the CNN in better
recognizing and classifying the shapes.

The primary contributions of this paper lie in its systematic
evaluation and analysis of key factors influencing 3D shape
classification using Convolutional Neural Networks (CNNs).
First, the paper provides a comprehensive assessment of how
varying grid sizes impact both the accuracy and computational
efficiency of 3D shape classification. By experimenting with
different grid dimensions, the study identifies the optimal
sizes that balance the trade-off between detailed
representation of shapes and the computational resources
required for processing them.

Furthermore, the paper delves into the benefits and
drawbacks of applying interpolation techniques to voxel grids
of different sizes. Through meticulous investigation, it
explores how interpolation affects the integrity of the shape
representation and the subsequent classification performance.
This analysis is crucial for understanding the implications of
resizing voxel grids, particularly in maintaining the fidelity of
the original 3D shapes.

Finally, the paper offers a set of best practices and
recommendations for optimizing grid size and interpolation
methods to enhance performance in 3D shape classification
tasks. These guidelines are derived from empirical findings
and are intended to aid researchers and practitioners in making
informed decisions when designing and implementing CNN-
based models for 3D shape classification. By addressing these
critical aspects, the paper significantly contributes to the field,
providing valuable insights and practical advice for improving
classification accuracy and efficiency.

The remainder of this paper is structured as follows:
Section two reviews related work in the domain of 3D shape
classification and the use of CNNs. Section three details the
methodology, including the dataset used, the CNN
architecture, and the experimental setup. Section four presents
the results of the experiments, analysing the impact of grid
size and interpolation on classification performance. Section
five discusses the findings, compares them with related work,
and highlights the implications for practical applications.

 Surya Prakash V
 ELMCAD Co. Ltd.
Seoul, South Korea

surya.prakash@msds.christuniversity.in

Yong-Woon Kim
Christ University

Pune, India
defeatst.kim@gmail.com

257979-8-3503-6463-7/24/$31.00 ©2024 IEEE ICTC 2024

Finally, Section six concludes the paper and outlines potential
directions for future research.

II. RELATED WORK

The field of 3D shape classification has significantly
evolved with advancements in machine learning and deep
learning techniques. Early methods relied on handcrafted
features and geometric descriptors like Shape Histograms and
Extended Gaussian Images, which were limited by their
dependence on manually engineered features that often failed
to handle the complexity of real-world 3D shapes effectively.
Deep learning revolutionized 3D shape classification,
particularly with the introduction of Multi-View
Convolutional Neural Networks (MVCNNs). MVCNNs
utilize multiple 2D projections of 3D objects, leveraging the
strengths of 2D CNNs while capturing detailed information
from various perspectives of the 3D shapes. Su et al. (2015)
demonstrated the superiority of MVCNNs over traditional
methods, showcasing their ability to learn robust features
from multiple viewpoints [1].

Point cloud-based methods, such as PointNet and
PointNet++, further advanced the field by directly processing
raw 3D point cloud data. Introduced by Qi et al. (2017),
PointNet and PointNet++ are capable of capturing both local
and global geometric structures of 3D objects [2]. PointNet's
architecture learns a spatial encoding of point sets, making it
invariant to the order of points, while PointNet++ extends this
approach with hierarchical feature learning, accommodating
more complex 3D shapes.

Voxel-based approaches represent another significant
development. Techniques like VoxNet convert 3D shapes
into volumetric grids, allowing the use of 3D CNNs.
Maturana and Scherer (2015) showed that VoxNet effectively
classifies 3D objects by learning spatial hierarchies within the
volumetric data [3]. Despite their effectiveness, voxel-based
methods can be computationally intensive, especially with
high-resolution data.

Mesh-based methods leverage the surface details and
topological information inherent in polygonal meshes. Mesh
CNN, proposed by Hanocka et al. (2019), utilizes graph
convolutional networks to process these irregular data
structures [4]. MeshCNN captures intricate geometric
features by operating directly on the mesh edges, balancing
computational efficiency and representational fidelity.

Hybrid approaches combining different data
representations, such as point clouds, voxels, and meshes,
exploit the complementary strengths of these methods.
Recent research integrates point cloud and voxel data to
enhance feature extraction and improve classification
accuracy. These hybrid methods aim to overcome the
limitations of individual approaches, leading to more robust
and accurate 3D shape classification systems.

Interpolation techniques are often applied to voxel grids

to handle varying input resolutions and to ensure consistent
input dimensions for CNNs. These techniques, such as
nearest-neighbour interpolation, linear interpolation, and

trilinear interpolation, can influence the fidelity of the voxel
representation and, consequently, the performance of the
classification model. Zhang et al. (2018) explored the impact
of different interpolation methods on 3D shape recognition
and found that while interpolation can help standardize input
sizes, it may also introduce artifacts that affect classification
accuracy [5].

Transfer learning and pre-trained models have also

become popular in 3D shape classification. By leveraging
models pre-trained on large datasets, researchers can reduce
the need for extensive labeled data and accelerate
development. This approach is especially useful when
acquiring labeled 3D data is challenging. Transfer learning
allows the adaptation of pre-trained models to specific tasks,
improving performance and reducing computational costs.

Practical applications of these advancements are vast and
impactful. In autonomous driving, 3D shape classification of
LiDAR data is crucial for object detection and navigation.
Robots rely on accurate 3D shape recognition to interact with
and manipulate objects in their environment. In medical
imaging, 3D shape classification aids in analyzing anatomical
structures from CT and MRI scans, improving diagnostic
accuracy. Augmented reality applications benefit from
precise integration of real-world objects into digital
environments, enhancing user experiences.

In summary, the evolution from traditional geometric
descriptors to sophisticated deep learning techniques has
significantly improved 3D shape classification. The
integration of multi-view, point cloud, voxel, and mesh-based
methods has enhanced accuracy and robustness. Hybrid
approaches and transfer learning further boost these
capabilities, paving the way for diverse applications across
various domains. The continuous advancements in this field
promise substantial technological and societal impacts.

III. METHODOLOGY
This section outlines the methodology used for 3D shape

classification using Convolutional Neural Networks (CNNs).
The process includes generating 3D shapes, preprocessing
them for CNN input, and defining the CNN model architecture
for classification.

A. Shape Creation

The 3D shapes (cube, pyramid, sphere, cone, and cylinder)
were generated using a custom Python script
(shape_creation.py). The script allows for the generation of
multiple instances of each shape, with parameters such as grid
size, target size, and interpolation options.

The function `generate_3d_shape` is responsible for
generating 500 instances of each shape by invoking specific
functions such as `generate_cube`, `generate_3d_pyramid`,
`generate_3d_sphere`, `generate_3d_cone`, and
`generate_3d_cylinder`. These shapes are created within a
100x100x100 grid and are subsequently resized to target
dimensions of 25x25x25, 50x50x50, and 10x10x10.

The resizing process of these shapes is handled by the
`zoom_shape` function. This function utilizes the
`scipy.ndimage.zoom` method, applying either nearest-

258

neighbours interpolation or constant mode (which implies no
interpolation) to achieve the desired size adjustments. Once
the shapes are resized, they are saved as 2D images through
the `save_as_image` function. This involves stacking the 3D
shape along the depth dimension to form a 2D image suitable
for storage as a PNG file. The below Figure I shows the
sample image of 3d shapes with interpolation.

Fig. 1. Sample Image of 3d Shapes with interpolation

B. Data Preprocessing

The generated 3D shapes, which are saved as 2D images,
are read and converted back to 3D arrays using the
`read_shape.py` script. This script contains functions tailored
for each shape type, including `read_cube_images`,
`read_pyramid_images`, `read_sphere_images`,
`read_cone_images`, and `read_cylinder_images`.

The process begins with reading the images from the
specified directory. These images are then converted back into
3D arrays by splitting the horizontally stacked layers and
stacking them along the third dimension. This reassembly of
the 2D image slices restores the original 3D shape structure.

Each shape type is assigned a unique label for
classification purposes: 0 for cubes, 1 for pyramids, 2 for
spheres, 3 for cones, and 4 for cylinders. These labels are
essential for distinguishing between the different shape types
in subsequent analysis or machine learning tasks.

C. Model Architecture

A 3D CNN model was implemented using TensorFlow
and Keras (model_create.py). The model architecture includes
multiple 3D convolutional layers followed by max-pooling
layers, dense layers, and dropout layers for regularization.

In the Table I model architecture begins with an input layer
that takes data in the shape of (depth, height, width, channels).
This structure is designed to accommodate 3D input volumes,
which might be 3D images or medical scans with one or
multiple channels (e.g., grayscale or RGB).

TABLE I. 3D CNN model structure

Layer (type) Output Shape* Parameter #
Conv3D (64 filters, 3x3x3) (50, 50, 50, 64) 1,792

MaxPooling3D (2x2x2) (25, 25, 25, 64) 0
Conv3D (128 filters, 3x3x3) (25, 25, 25, 128) 221,312

MaxPooling3D (2x2x2) (13, 13, 13, 128) 0
Conv3D (256 filters, 3x3x3) (13, 13, 13, 256) 884,992

MaxPooling3D (2x2x2) (7, 7, 7, 256) 0
Flatten 87,136 0

Dense (256 units, ReLU) 256 22,327,072
Dropout (50%) 256 0

Dense (128 units, ReLU) 128 32,896
Dropout (50%) 128 0

Dense (5 units, SoftMax) 5 645
(* Input shape size is 50x50x50)

For the input shape of 50x50x50, the model comprises
23,468,709 parameters. This large parameter count is
attributed to the high dimensionality of the input data. In a
convolutional neural network, each layer processes the input
through multiple filters, generating numerous feature maps
that are subsequently processed by subsequent layers. With a
larger input size, each convolutional layer handles a
significant number of neurons, leading to a substantial
increase in the number of weights and biases that need to be
learned. This results in a model that is highly capable of
capturing intricate spatial features and complex patterns
within the data. However, this complexity comes at the cost
of increased computational resources and memory
requirements, and there is a higher risk of overfitting,
particularly if the training dataset is not sufficiently large or
diverse.

When the input shape is reduced to 25x25x25 , the
number of parameters decreases to 5,336,197. This reduction
occurs because the smaller input dimensions mean fewer
neurons per layer, which in turn reduces the number of
weights and biases. A model with this input shape strikes a
balance between computational efficiency and the ability to
capture essential features from the data. It requires less
memory and computational power compared to the larger
input shape, making it more practical for many applications.
This reduction in complexity helps mitigate the risk of
overfitting, while still allowing the model to learn meaningful
patterns in the data. Therefore, this grid size offers a good
trade-off between model performance and resource
requirements.

Further reducing the input shape to 10x10x10 results in a
model with 1,666,181 parameters. This significant decrease
in parameters leads to a much simpler model. Each layer
processes a relatively small number of neurons, requiring
fewer weights and biases, which reduces the computational

259

load and memory usage. This simplicity is advantageous for
environments with limited computational resources and helps
prevent overfitting due to the reduced capacity of the model.
However, the trade-off is that the model may not capture as
many detailed features and complex patterns within the data.
This grid size is suitable for tasks where high resolution is not
critical, and computational efficiency is prioritized, but it may
not perform as well on more complex data requiring detailed
feature extraction.

The first layer in the network is a 3D convolutional layer

(Conv3D) with 64 filters, each of size 3x3x3. This layer
applies these filters to the input volume to capture local spatial
patterns. The ReLU activation function introduces non-
linearity, enabling the network to learn complex features.
Padding is set to 'same' to ensure that the output volume has
the same spatial dimensions (depth, height, width) as the
input, allowing for better handling of edge cases.

Following the convolutional layer is a 3D max-pooling
layer (MaxPooling3D) with a pool size of 2x2x2. This layer
reduces the spatial dimensions of the input by taking the
maximum value over each 2x2x2 block, effectively down
sampling the volume by half in each dimension. Padding
'same' ensures that the down sampling preserves the original
dimension properties without discarding edge information.

The second convolutional layer, similar to the first,
increases the filter count to 128, again with a kernel size of
3x3x3 and ReLU activation. This layer processes the output
of the previous max-pooling layer, capturing more detailed
features with higher abstraction. It is followed by another
max-pooling layer with the same pool size of 2x2x2 and 'same'
padding, further reducing the spatial dimensions.

The third convolutional layer escalates the filter count to
256, maintaining the kernel size of 3x3x3 and ReLU
activation. This layer allows the network to learn even more
complex and abstract features from the input data. The
subsequent max-pooling layer again uses a 2x2x2 window and
'same' padding, continuing the down sampling process.

Next, the Flatten layer transforms the 3D output from the
final max-pooling layer into a 1D vector. This flattening step
is crucial as it transitions the data from spatial dimensions to
a format suitable for dense (fully connected) layers. The first
dense layer, with 256 neurons and ReLU activation, receives
this flattened vector and learns to combine the extracted
features into more abstract representations. To mitigate
overfitting, a dropout layer follows, randomly setting 50% of
the input units to 0 during training.

The network includes a second dense layer with 128
neurons and ReLU activation, which further refines the
learned features. This layer is also followed by a dropout layer
with a 50% dropout rate, providing additional regularization.

The final layer is a dense output layer with 5 neurons,
corresponding to the 5 different classes (e.g., different shape
types). The softmax activation function in this layer converts
the raw scores into probabilities, providing a probability
distribution over the 5 classes. This allows the network to
output a classification decision based on the highest
probability.

For compilation, the model uses the Adam optimizer, an
adaptive learning rate optimization algorithm that combines

the benefits of AdaGrad and RMSProp. Adam adjusts the
learning rate for each parameter dynamically, facilitating
faster and more efficient convergence. The loss function
employed is categorical cross-entropy, suitable for multi-class
classification problems. It measures the performance of the
classification model by comparing the predicted probability
distribution with the actual labels, with the loss increasing as
the predicted probability diverges from the actual label.
Accuracy is used as the evaluation metric, providing a
straightforward measure of the proportion of correctly
classified instances out of the total instances. This metric helps
in assessing the overall performance of the model in terms of
its ability to correctly classify the input data.

D. Training and Evaluation

The model was trained and evaluated through a rigorous
process involving cross-validation with three folds to ensure
robust and reliable performance metrics.

During the data preparation phase, the images and their
corresponding labels were normalized and transformed into a
format suitable for machine learning models. The labels were
converted to one-hot encoding to facilitate multi-class
classification. Subsequently, the dataset was divided into
training and testing sets using K-Fold cross-validation,
specifically with three splits, to allow the model to be trained
and validated on different subsets of the data, thereby
improving generalization.

For the training phase, the model was trained over five
epochs with a batch size of 32 for each fold. This iterative
process allowed the model to learn from the data gradually,
adjusting its parameters to minimize the loss function and
improve prediction accuracy. The use of batch processing
helped in managing memory usage and speeding up the
training process.

The evaluation phase involved assessing the model's
performance using several key metrics. Test accuracy was
calculated to measure the proportion of correctly classified
instances. Precision, recall, and F1 score provided a more
nuanced view of the model's performance by considering the
balance between correctly identified positive instances and the
errors. Additionally, a confusion matrix was used to visualize
the model's classification results, highlighting the instances of
true positives, true negatives, false positives, and false
negatives.

The average test accuracy across the folds was computed
to give an overall performance indicator of the model. The
confusion matrix served as a diagnostic tool to identify
specific areas where the model might be underperforming,
guiding further refinement and tuning of the model. Through
this comprehensive training and evaluation approach, the
model's effectiveness in classifying the different shapes was
thoroughly vetted.

F. Results using proposed model:

The results of the proposed 3D shape classification models
are highly promising, demonstrating the model's efficacy
across various configurations. The models were tested using
three different target sizes: 10x10x10, 25x25x25, and
50x50x50, each with and without interpolation, using 300
samples for each configuration and evaluated through 5-fold
cross-validation. The performance metrics, including
accuracy, precision, recall, and F1 score, consistently
indicated high levels of accuracy.

260

TABLE II. Performance metrics for various grid size without interpolation

Metrics /

Grid Size

10x10x10 25x25x25 50x50x50

Accuracy 99.267 99.533 99.933

Precision 99.274 99.543 99.935

Recall 99.267 99.533 99.931

F1 - Score 99.263 99.534 99.933

TABLE III. Performance metrics for various grid size with interpolation

Metrics /

Grid Size

10x10x10 25x25x25 50x50x50

Accuracy 99.466 99.733 100

Precision 99.474 99.736 100

Recall 99.466 99.733 100

F1 - Score 99.469 99.732 100

From the above Table II and Table III, for 25x25x25 target
size, the model achieved an accuracy of 99.5% without
interpolation and slightly improved to 99.7% with
interpolation. Precision, recall, and F1 score mirrored these
results, showing consistent performance across these metrics.
This indicates that the model effectively identified and
classified the shapes with a high degree of accuracy and
minimal error.

The 50x50x50 target size yielded the highest performance,
with the model achieving near-perfect results. Without
interpolation, the accuracy was 99.9%, and with interpolation,
the model reached a perfect accuracy of 100%. The
corresponding precision, recall, and F1 score also attained
100%, showcasing the model's ability to leverage the larger
target size for more detailed and accurate shape
representations.

In comparison, the 10x10x10 target size, while still
performing admirably, showed slightly lower metrics than the
larger target sizes. The model achieved 99.2% accuracy
without interpolation and 99.4% with interpolation. Precision,
recall, and F1 score followed similar trends, indicating that
while the model performed well, it benefited from the
increased detail provided by larger target sizes.

 Overall, the results affirm that the proposed 3D CNN
model is highly effective for shape classification, with
interpolation generally enhancing performance. The findings
suggest that larger target sizes provide more detailed
representations, thereby improving the model's accuracy and
reliability. The highest performance was observed with the
50x50x50 target size with interpolation, achieving perfect
scores across all metrics, demonstrating the model's
robustness and precision in classifying 3D shapes.

IV. CONCLUSION
This research paper presented a novel approach for 3D

shape classification using a deep learning framework,

specifically leveraging Convolutional Neural Networks
(CNNs) on 3D voxel data. The experiments demonstrated
that the proposed model effectively distinguishes between
different 3D shapes, achieving high accuracy, precision,
recall, and F1 scores across various configurations. Notably,
the model achieved perfect classification performance (100%
accuracy, precision, recall, and F1 score) on the 50x50x50
dataset with interpolation, indicating the potential of the
model to handle high-resolution data with remarkable
accuracy. The results also showed that interpolation generally
improved the model's performance across different voxel
sizes, underscoring the importance of data preprocessing
techniques in enhancing model efficacy.

V. FUTURE WORKS
The promising results of this study open several avenues

for future research. First, expanding the dataset to include a
wider variety of shapes and more complex geometries could
further validate the model's robustness and generalizability.
Additionally, exploring the integration of hybrid methods
that combine voxel data with other representations such as
point clouds or mesh data could enhance feature extraction
and classification accuracy. Another potential direction is the
application of transfer learning to leverage pre-trained
models on large-scale 3D datasets, reducing the need for
extensive labeled data and accelerating model development.
Moreover, investigating the model's performance in real-
world applications, such as autonomous driving, robotic
manipulation, and medical imaging, would be valuable.
Finally, optimizing the model's computational efficiency and
exploring the use of advanced hardware accelerators like
GPUs and TPUs could facilitate the deployment of the model
in resource-constrained environments. These future
directions aim to build on the current findings, further
advancing the field of 3D shape classification and broadening
its practical applications.

REFERENCES

[1] Su, Hang & Maji, Subhransu & Kalogerakis, Evangelos & Learned-
Miller, Erik. (2015). Multi-view Convolutional Neural Networks for
3D Shape Recognition. 10.1109/ICCV.2015.114.

[2] Charles, R. & Su, Hao & Mo, Kaichun & Guibas, Leonidas. (2017).
PointNet: Deep Learning on Point Sets for 3D Classification and
Segmentation. 77-85. 10.1109/CVPR.2017.16.

[3] Maturana, Daniel & Scherer, Sebastian. (2015). VoxNet: A 3D
Convolutional Neural Network for real-time object recognition. 922-
928. 10.1109/IROS.2015.7353481.

[4] Hanocka, Rana & Hertz, Amir & Fish, Noa & Giryes, Raja &
Fleishman, Shachar & Cohen-Or, Daniel. (2018). MeshCNN: A
Network with an Edge.

[5] Gezawa, Abubakar & Zhang, Yan & Wang, Qicong & Yunqi, Lei.
(2020). A Review on Deep Learning Approaches for 3D Data
Representations in Retrieval and Classifications. IEEE Access. PP. 1-
1. 10.1109/ACCESS.2020.2982196.

261

