
 

 A Comparative Study on the Effect of Grid Size 
and Interpolation Techniques in 3D Shape 

Classification with CNN
 

Abstract— This paper presents a comprehensive study on 3D 
shape classification utilizing Convolutional Neural Networks 
(CNNs). The research investigates the performance variations 
arising from different grid sizes and the application of 
interpolation techniques. A systematic analysis is conducted to 
determine how these factors influence the accuracy and 
efficiency of 3D shape classification. The experiments reveal that 
grid size significantly impacts the CNN's ability to accurately 
classify shapes with respect to computation time, with larger 
grid sizes enhancing classification accuracy and other 
performance metrics. When interpolation techniques are 
applied, performance metrics further improve, with the highest 
grid sizes achieving optimal accuracy, precision, recall, and F1-
score. These findings contribute valuable insights for optimizing 
3D shape classification models, demonstrating the crucial roles 
of both grid size and interpolation techniques in achieving high 
classification accuracy and efficiency in practical applications. 

Keywords— Convolutional neural network (CNN); Zoom 
Interpolation, 3D Shapes 

I. INTRODUCTION  
The classification of 3D shapes is a crucial task in various 

fields such as computer vision, robotics, medical imaging, and 
augmented reality. Accurate classification of 3D shapes 
enables applications ranging from object recognition and 
scene understanding to the development of autonomous 
systems and advanced human-computer interaction interfaces. 
Traditional methods for 3D shape classification have relied 
heavily on handcrafted features and geometric descriptors, 
which often require extensive domain knowledge and can be 
sensitive to noise and variations in the data. 

With the advent of deep learning, Convolutional Neural 
Networks (CNNs) have emerged as a powerful tool for image 
classification, demonstrating remarkable performance across 
a wide range of tasks. CNNs are particularly well-suited for 
handling the spatial hierarchies in visual data, making them an 
attractive option for 3D shape classification. However, the 
direct application of CNNs to 3D data presents several 
challenges due to the inherent complexity and high 
dimensionality of 3D shapes. 

A common approach to mitigate these challenges involves 
representing 3D shapes as voxel grids or multi-view 
projections, allowing CNNs to process the data in a format 
similar to 2D images. This study focuses on the voxel grid 
representation of 3D shapes, wherein the shapes are 
discretized into a 3D grid of binary or occupancy values. The 
resolution of this grid, referred to as the grid size, plays a 
critical role in determining the balance between computational 
efficiency and the preservation of shape details. 

This research aims to provide a comprehensive analysis of 
the impact of different grid sizes on the performance of CNN-
based 3D shape classification. Additionally, the study  
examines the role of interpolation techniques in enhancing 
classification accuracy by addressing the loss of spatial 
information that occurs during the discretization process. 
Interpolation techniques can potentially improve the 
representation of 3D shapes by filling in gaps and smoothing 
out irregularities, thereby aiding the CNN in better 
recognizing and classifying the shapes. 

The primary contributions of this paper lie in its systematic 
evaluation and analysis of key factors influencing 3D shape 
classification using Convolutional Neural Networks (CNNs). 
First, the paper provides a comprehensive assessment of how 
varying grid sizes impact both the accuracy and computational 
efficiency of 3D shape classification. By experimenting with 
different grid dimensions, the study identifies the optimal 
sizes that balance the trade-off between detailed 
representation of shapes and the computational resources 
required for processing them. 

Furthermore, the paper delves into the benefits and 
drawbacks of applying interpolation techniques to voxel grids 
of different sizes. Through meticulous investigation, it 
explores how interpolation affects the integrity of the shape 
representation and the subsequent classification performance. 
This analysis is crucial for understanding the implications of 
resizing voxel grids, particularly in maintaining the fidelity of 
the original 3D shapes. 

Finally, the paper offers a set of best practices and 
recommendations for optimizing grid size and interpolation 
methods to enhance performance in 3D shape classification 
tasks. These guidelines are derived from empirical findings 
and are intended to aid researchers and practitioners in making 
informed decisions when designing and implementing CNN-
based models for 3D shape classification. By addressing these 
critical aspects, the paper significantly contributes to the field, 
providing valuable insights and practical advice for improving 
classification accuracy and efficiency. 

The remainder of this paper is structured as follows: 
Section two reviews related work in the domain of 3D shape 
classification and the use of CNNs. Section three details the 
methodology, including the dataset used, the CNN 
architecture, and the experimental setup. Section four presents 
the results of the experiments, analysing the impact of grid 
size and interpolation on classification performance. Section 
five discusses the findings, compares them with related work, 
and highlights the implications for practical applications. 
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Finally, Section six concludes the paper and outlines potential 
directions for future research. 

II. RELATED WORK 
 

The field of 3D shape classification has significantly 
evolved with advancements in machine learning and deep 
learning techniques. Early methods relied on handcrafted 
features and geometric descriptors like Shape Histograms and 
Extended Gaussian Images, which were limited by their 
dependence on manually engineered features that often failed 
to handle the complexity of real-world 3D shapes effectively. 
Deep learning revolutionized 3D shape classification, 
particularly with the introduction of Multi-View 
Convolutional Neural Networks (MVCNNs). MVCNNs 
utilize multiple 2D projections of 3D objects, leveraging the 
strengths of 2D CNNs while capturing detailed information 
from various perspectives of the 3D shapes. Su et al. (2015) 
demonstrated the superiority of MVCNNs over traditional 
methods, showcasing their ability to learn robust features 
from multiple viewpoints [1]. 
 

Point cloud-based methods, such as PointNet and 
PointNet++, further advanced the field by directly processing 
raw 3D point cloud data. Introduced by Qi et al. (2017), 
PointNet and PointNet++ are capable of capturing both local 
and global geometric structures of 3D objects [2]. PointNet's 
architecture learns a spatial encoding of point sets, making it 
invariant to the order of points, while PointNet++ extends this 
approach with hierarchical feature learning, accommodating 
more complex 3D shapes. 
 

Voxel-based approaches represent another significant 
development. Techniques like VoxNet convert 3D shapes 
into volumetric grids, allowing the use of 3D CNNs. 
Maturana and Scherer (2015) showed that VoxNet effectively 
classifies 3D objects by learning spatial hierarchies within the 
volumetric data [3]. Despite their effectiveness, voxel-based 
methods can be computationally intensive, especially with 
high-resolution data. 
 

Mesh-based methods leverage the surface details and 
topological information inherent in polygonal meshes. Mesh 
CNN, proposed by Hanocka et al. (2019), utilizes graph 
convolutional networks to process these irregular data 
structures [4]. MeshCNN captures intricate geometric 
features by operating directly on the mesh edges, balancing 
computational efficiency and representational fidelity. 
 

Hybrid approaches combining different data 
representations, such as point clouds, voxels, and meshes, 
exploit the complementary strengths of these methods. 
Recent research integrates point cloud and voxel data to 
enhance feature extraction and improve classification 
accuracy. These hybrid methods aim to overcome the 
limitations of individual approaches, leading to more robust 
and accurate 3D shape classification systems. 

 
Interpolation techniques are often applied to voxel grids 

to handle varying input resolutions and to ensure consistent 
input dimensions for CNNs. These techniques, such as 
nearest-neighbour interpolation, linear interpolation, and 

trilinear interpolation, can influence the fidelity of the voxel 
representation and, consequently, the performance of the 
classification model. Zhang et al. (2018) explored the impact 
of different interpolation methods on 3D shape recognition 
and found that while interpolation can help standardize input 
sizes, it may also introduce artifacts that affect classification 
accuracy [5]. 

 
Transfer learning and pre-trained models have also 

become popular in 3D shape classification. By leveraging 
models pre-trained on large datasets, researchers can reduce 
the need for extensive labeled data and accelerate 
development. This approach is especially useful when 
acquiring labeled 3D data is challenging. Transfer learning 
allows the adaptation of pre-trained models to specific tasks, 
improving performance and reducing computational costs. 
 

Practical applications of these advancements are vast and 
impactful. In autonomous driving, 3D shape classification of 
LiDAR data is crucial for object detection and navigation. 
Robots rely on accurate 3D shape recognition to interact with 
and manipulate objects in their environment. In medical 
imaging, 3D shape classification aids in analyzing anatomical 
structures from CT and MRI scans, improving diagnostic 
accuracy. Augmented reality applications benefit from 
precise integration of real-world objects into digital 
environments, enhancing user experiences. 
 

In summary, the evolution from traditional geometric 
descriptors to sophisticated deep learning techniques has 
significantly improved 3D shape classification. The 
integration of multi-view, point cloud, voxel, and mesh-based 
methods has enhanced accuracy and robustness. Hybrid 
approaches and transfer learning further boost these 
capabilities, paving the way for diverse applications across 
various domains. The continuous advancements in this field 
promise substantial technological and societal impacts. 

III. METHODOLOGY 
This section outlines the methodology used for 3D shape 

classification using Convolutional Neural Networks (CNNs). 
The process includes generating 3D shapes, preprocessing 
them for CNN input, and defining the CNN model architecture 
for classification. 

A. Shape Creation 

The 3D shapes (cube, pyramid, sphere, cone, and cylinder) 
were generated using a custom Python script 
(shape_creation.py). The script allows for the generation of 
multiple instances of each shape, with parameters such as grid 
size, target size, and interpolation options. 

The function `generate_3d_shape` is responsible for 
generating 500 instances of each shape by invoking specific 
functions such as `generate_cube`, `generate_3d_pyramid`, 
`generate_3d_sphere`, `generate_3d_cone`, and 
`generate_3d_cylinder`. These shapes are created within a 
100x100x100 grid and are subsequently resized to target 
dimensions of 25x25x25, 50x50x50, and 10x10x10. 
 

The resizing process of these shapes is handled by the 
`zoom_shape` function. This function utilizes the 
`scipy.ndimage.zoom` method, applying either nearest-
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neighbours interpolation or constant mode (which implies no 
interpolation) to achieve the desired size adjustments. Once 
the shapes are resized, they are saved as 2D images through 
the `save_as_image` function. This involves stacking the 3D 
shape along the depth dimension to form a 2D image suitable 
for storage as a PNG file. The below Figure I shows the 
sample image of 3d shapes with interpolation. 

                   

      

                         
Fig. 1. Sample Image of 3d Shapes with interpolation 
 

B. Data Preprocessing 

The generated 3D shapes, which are saved as 2D images, 
are read and converted back to 3D arrays using the 
`read_shape.py` script. This script contains functions tailored 
for each shape type, including `read_cube_images`, 
`read_pyramid_images`, `read_sphere_images`, 
`read_cone_images`, and `read_cylinder_images`. 

The process begins with reading the images from the 
specified directory. These images are then converted back into 
3D arrays by splitting the horizontally stacked layers and 
stacking them along the third dimension. This reassembly of 
the 2D image slices restores the original 3D shape structure. 

Each shape type is assigned a unique label for 
classification purposes: 0 for cubes, 1 for pyramids, 2 for 
spheres, 3 for cones, and 4 for cylinders. These labels are 
essential for distinguishing between the different shape types 
in subsequent analysis or machine learning tasks. 

C. Model Architecture 

A 3D CNN model was implemented using TensorFlow 
and Keras (model_create.py). The model architecture includes 
multiple 3D convolutional layers followed by max-pooling 
layers, dense layers, and dropout layers for regularization. 

In the Table I model architecture begins with an input layer 
that takes data in the shape of (depth, height, width, channels). 
This structure is designed to accommodate 3D input volumes, 
which might be 3D images or medical scans with one or 
multiple channels (e.g., grayscale or RGB). 

TABLE I. 3D CNN model structure 

Layer (type) Output Shape* Parameter # 
Conv3D (64 filters, 3x3x3) (50, 50, 50, 64) 1,792 

MaxPooling3D (2x2x2) (25, 25, 25, 64) 0 
Conv3D (128 filters, 3x3x3) (25, 25, 25, 128) 221,312 

MaxPooling3D (2x2x2) (13, 13, 13, 128) 0 
Conv3D (256 filters, 3x3x3) (13, 13, 13, 256) 884,992 

MaxPooling3D (2x2x2) (7, 7, 7, 256) 0 
Flatten 87,136 0 

Dense (256 units, ReLU) 256 22,327,072 
Dropout (50%) 256 0 

Dense (128 units, ReLU) 128 32,896 
Dropout (50%) 128 0 

Dense (5 units, SoftMax) 5 645 
(* Input shape size is 50x50x50) 

 

For the input shape of 50x50x50, the model comprises 
23,468,709 parameters. This large parameter count is 
attributed to the high dimensionality of the input data. In a 
convolutional neural network, each layer processes the input 
through multiple filters, generating numerous feature maps 
that are subsequently processed by subsequent layers. With a 
larger input size, each convolutional layer handles a 
significant number of neurons, leading to a substantial 
increase in the number of weights and biases that need to be 
learned. This results in a model that is highly capable of 
capturing intricate spatial features and complex patterns 
within the data. However, this complexity comes at the cost 
of increased computational resources and memory 
requirements, and there is a higher risk of overfitting, 
particularly if the training dataset is not sufficiently large or 
diverse. 

When the input shape is reduced to 25x25x25 , the 
number of parameters decreases to 5,336,197. This reduction 
occurs because the smaller input dimensions mean fewer 
neurons per layer, which in turn reduces the number of 
weights and biases. A model with this input shape strikes a 
balance between computational efficiency and the ability to 
capture essential features from the data. It requires less 
memory and computational power compared to the larger 
input shape, making it more practical for many applications. 
This reduction in complexity helps mitigate the risk of 
overfitting, while still allowing the model to learn meaningful 
patterns in the data. Therefore, this grid size offers a good 
trade-off between model performance and resource 
requirements. 

Further reducing the input shape to 10x10x10 results in a 
model with 1,666,181 parameters. This significant decrease 
in parameters leads to a much simpler model. Each layer 
processes a relatively small number of neurons, requiring 
fewer weights and biases, which reduces the computational 
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load and memory usage. This simplicity is advantageous for 
environments with limited computational resources and helps 
prevent overfitting due to the reduced capacity of the model. 
However, the trade-off is that the model may not capture as 
many detailed features and complex patterns within the data. 
This grid size is suitable for tasks where high resolution is not 
critical, and computational efficiency is prioritized, but it may 
not perform as well on more complex data requiring detailed 
feature extraction. 

 
The first layer in the network is a 3D convolutional layer 

(Conv3D) with 64 filters, each of size 3x3x3. This layer 
applies these filters to the input volume to capture local spatial 
patterns. The ReLU activation function introduces non-
linearity, enabling the network to learn complex features. 
Padding is set to 'same' to ensure that the output volume has 
the same spatial dimensions (depth, height, width) as the 
input, allowing for better handling of edge cases. 

Following the convolutional layer is a 3D max-pooling 
layer (MaxPooling3D) with a pool size of 2x2x2. This layer 
reduces the spatial dimensions of the input by taking the 
maximum value over each 2x2x2 block, effectively down 
sampling the volume by half in each dimension. Padding 
'same' ensures that the down sampling preserves the original 
dimension properties without discarding edge information. 

The second convolutional layer, similar to the first, 
increases the filter count to 128, again with a kernel size of 
3x3x3 and ReLU activation. This layer processes the output 
of the previous max-pooling layer, capturing more detailed 
features with higher abstraction. It is followed by another 
max-pooling layer with the same pool size of 2x2x2 and 'same' 
padding, further reducing the spatial dimensions. 

The third convolutional layer escalates the filter count to 
256, maintaining the kernel size of 3x3x3 and ReLU 
activation. This layer allows the network to learn even more 
complex and abstract features from the input data. The 
subsequent max-pooling layer again uses a 2x2x2 window and 
'same' padding, continuing the down sampling process. 

Next, the Flatten layer transforms the 3D output from the 
final max-pooling layer into a 1D vector. This flattening step 
is crucial as it transitions the data from spatial dimensions to 
a format suitable for dense (fully connected) layers. The first 
dense layer, with 256 neurons and ReLU activation, receives 
this flattened vector and learns to combine the extracted 
features into more abstract representations. To mitigate 
overfitting, a dropout layer follows, randomly setting 50% of 
the input units to 0 during training. 

The network includes a second dense layer with 128 
neurons and ReLU activation, which further refines the 
learned features. This layer is also followed by a dropout layer 
with a 50% dropout rate, providing additional regularization. 

The final layer is a dense output layer with 5 neurons, 
corresponding to the 5 different classes (e.g., different shape 
types). The softmax activation function in this layer converts 
the raw scores into probabilities, providing a probability 
distribution over the 5 classes. This allows the network to 
output a classification decision based on the highest 
probability. 

For compilation, the model uses the Adam optimizer, an 
adaptive learning rate optimization algorithm that combines 

the benefits of AdaGrad and RMSProp. Adam adjusts the 
learning rate for each parameter dynamically, facilitating 
faster and more efficient convergence. The loss function 
employed is categorical cross-entropy, suitable for multi-class 
classification problems. It measures the performance of the 
classification model by comparing the predicted probability 
distribution with the actual labels, with the loss increasing as 
the predicted probability diverges from the actual label. 
Accuracy is used as the evaluation metric, providing a 
straightforward measure of the proportion of correctly 
classified instances out of the total instances. This metric helps 
in assessing the overall performance of the model in terms of 
its ability to correctly classify the input data. 

D. Training and Evaluation 

The model was trained and evaluated through a rigorous 
process involving cross-validation with three folds to ensure 
robust and reliable performance metrics.  

During the data preparation phase, the images and their 
corresponding labels were normalized and transformed into a 
format suitable for machine learning models. The labels were 
converted to one-hot encoding to facilitate multi-class 
classification. Subsequently, the dataset was divided into 
training and testing sets using K-Fold cross-validation, 
specifically with three splits, to allow the model to be trained 
and validated on different subsets of the data, thereby 
improving generalization. 

For the training phase, the model was trained over five 
epochs with a batch size of 32 for each fold. This iterative 
process allowed the model to learn from the data gradually, 
adjusting its parameters to minimize the loss function and 
improve prediction accuracy. The use of batch processing 
helped in managing memory usage and speeding up the 
training process. 

The evaluation phase involved assessing the model's 
performance using several key metrics. Test accuracy was 
calculated to measure the proportion of correctly classified 
instances. Precision, recall, and F1 score provided a more 
nuanced view of the model's performance by considering the 
balance between correctly identified positive instances and the 
errors. Additionally, a confusion matrix was used to visualize 
the model's classification results, highlighting the instances of 
true positives, true negatives, false positives, and false 
negatives. 

The average test accuracy across the folds was computed 
to give an overall performance indicator of the model. The 
confusion matrix served as a diagnostic tool to identify 
specific areas where the model might be underperforming, 
guiding further refinement and tuning of the model. Through 
this comprehensive training and evaluation approach, the 
model's effectiveness in classifying the different shapes was 
thoroughly vetted. 

F. Results using proposed model: 

The results of the proposed 3D shape classification models 
are highly promising, demonstrating the model's efficacy 
across various configurations. The models were tested using 
three different target sizes: 10x10x10, 25x25x25, and 
50x50x50, each with and without interpolation, using 300 
samples for each configuration and evaluated through 5-fold 
cross-validation. The performance metrics, including 
accuracy, precision, recall, and F1 score, consistently 
indicated high levels of accuracy. 
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TABLE II. Performance metrics for various grid size without interpolation 

Metrics  / 

Grid Size 

10x10x10 25x25x25 50x50x50 

Accuracy 99.267 99.533 99.933 

Precision 99.274 99.543 99.935 

Recall 99.267 99.533 99.931 

F1 - Score 99.263 99.534 99.933 

 
TABLE III. Performance metrics for various grid size with interpolation 

Metrics  / 

Grid Size 

10x10x10 25x25x25 50x50x50 

Accuracy 99.466 99.733 100 

Precision 99.474 99.736 100 

Recall 99.466 99.733 100 

F1 - Score 99.469 99.732 100 

 

From the above Table II and Table III, for 25x25x25 target 
size, the model achieved an accuracy of 99.5% without 
interpolation and slightly improved to 99.7% with 
interpolation. Precision, recall, and F1 score mirrored these 
results, showing consistent performance across these metrics. 
This indicates that the model effectively identified and 
classified the shapes with a high degree of accuracy and 
minimal error. 

The 50x50x50 target size yielded the highest performance, 
with the model achieving near-perfect results. Without 
interpolation, the accuracy was 99.9%, and with interpolation, 
the model reached a perfect accuracy of 100%. The 
corresponding precision, recall, and F1 score also attained 
100%, showcasing the model's ability to leverage the larger 
target size for more detailed and accurate shape 
representations. 

In comparison, the 10x10x10 target size, while still 
performing admirably, showed slightly lower metrics than the 
larger target sizes. The model achieved 99.2% accuracy 
without interpolation and 99.4% with interpolation. Precision, 
recall, and F1 score followed similar trends, indicating that 
while the model performed well, it benefited from the 
increased detail provided by larger target sizes. 

           Overall, the results affirm that the proposed 3D CNN 
model is highly effective for shape classification, with 
interpolation generally enhancing performance. The findings 
suggest that larger target sizes provide more detailed 
representations, thereby improving the model's accuracy and 
reliability. The highest performance was observed with the 
50x50x50 target size with interpolation, achieving perfect 
scores across all metrics, demonstrating the model's 
robustness and precision in classifying 3D shapes. 

IV. CONCLUSION 
This research paper presented a novel approach for 3D 

shape classification using a deep learning framework, 

specifically leveraging Convolutional Neural Networks 
(CNNs) on 3D voxel data. The experiments demonstrated 
that the proposed model effectively distinguishes between 
different 3D shapes, achieving high accuracy, precision, 
recall, and F1 scores across various configurations. Notably, 
the model achieved perfect classification performance (100% 
accuracy, precision, recall, and F1 score) on the 50x50x50 
dataset with interpolation, indicating the potential of the 
model to handle high-resolution data with remarkable 
accuracy. The results also showed that interpolation generally 
improved the model's performance across different voxel 
sizes, underscoring the importance of data preprocessing 
techniques in enhancing model efficacy. 
 

V. FUTURE WORKS 
The promising results of this study open several avenues 

for future research. First, expanding the dataset to include a 
wider variety of shapes and more complex geometries could 
further validate the model's robustness and generalizability. 
Additionally, exploring the integration of hybrid methods 
that combine voxel data with other representations such as 
point clouds or mesh data could enhance feature extraction 
and classification accuracy. Another potential direction is the 
application of transfer learning to leverage pre-trained 
models on large-scale 3D datasets, reducing the need for 
extensive labeled data and accelerating model development. 
Moreover, investigating the model's performance in real-
world applications, such as autonomous driving, robotic 
manipulation, and medical imaging, would be valuable. 
Finally, optimizing the model's computational efficiency and 
exploring the use of advanced hardware accelerators like 
GPUs and TPUs could facilitate the deployment of the model 
in resource-constrained environments. These future 
directions aim to build on the current findings, further 
advancing the field of 3D shape classification and broadening 
its practical applications. 
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