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Abstract—In next-generation 6G scenarios, non-terrestrial net-
works employing low Earth orbit (LEO) satellites will be pivotal
in achieving ultra-wide coverage, ultra-connectivity, and ultra-
precision. Although LEO satellites provide comprehensive global
coverage, their rapid mobility introduces frequent handovers,
requiring sophisticated scheduling to maintain uninterrupted
service. This paper proposes a deep reinforcement learning-
based scheduling algorithm in order to improve service rate and
continuity for terrestrial users in multi-LEO environments.

Index Terms—non-terrestrial networks, LEO satellites, han-
dover, deep reinforcement learning, scheduling optimization

I. INTRODUCTION

The 3rd generation partnership project (3GPP) has proposed
a conditional handover procedure for NTN to address chal-
lenges associated with the rapid mobility of LEO satellites
and the movement of UE. This procedure is triggered when
specific conditions are met, and various handover triggering
events have been defined [1]. Among these, the A3 event,
based on signal strength, is widely used. Recent research has
also explored handover techniques that consider the distance
to the cell center or satellite [2]. However, simple event-based
designs and traditional mathematical optimization methods
have limitations in performing handovers at the optimal time
in multi-satellite environments, which is crucial for maximiz-
ing UE throughput. Accordingly, this paper proposes a deep
reinforcement learning-based LEO scheduling technique to
enhance UE service continuity and received signal strength by
enabling terrestrial UEs to perform handovers at the optimal
time. The performance of the proposed method is analyzed [3]

[4].

II. HANDOVER MECHANISM FOR DEEP REINFORCEMENT
LEARNING IMPLEMENTATION

A. Handover Mechanism

In NTN, it is essential for terrestrial UEs to perform han-
dovers at the appropriate time, considering the rapid mobility
of LEO satellites, to maintain continuous service. The A3
event, which is commonly used for handovers, is defined by
equation (1) as the condition where a handover is triggered
when the received signal strength of the target cell (u,) exceeds
the sum of the received signal strength of the currently serving
cell (us) and a predefined threshold.

u; > ug~+threshold, (1)
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Fig. 1: System model

B. Proposed Deep Reinforcement Learning Algorithm

This paper aims to optimize the scheduling problem in
which a terrestrial UE agent performs handovers at the optimal
time to maximize received signal strength, based on the
handover mechanism defined in Section II-A, using a deep-
g-network (DQN) reinforcement learning algorithm. In the
proposed DQN approach, which is designed to maximize the
received signal strength as LEO satellites move, the Markov
decision process (MDP) state (s;) is defined as a combination
of the distance between the UE and each LEO (s,;), the eleva-
tion angle between the UE and LEO (s,), the UE’s received
signal strength (s,), and the UE’s signal-to-interference-plus-
noise ratio (SINR) value (s,), such that s; = [s4,Sc,5g,5/].
Notably, in the process of selecting a LEO, the UE classifies
a LEO as connectable only if the value of s, meets the
minimum requirement of 30°. From a scheduling perspective,
where the UE selects the LEO satellite for service, the UE’s
action (a;) is defined as follows: if the signal strength of
the currently serving LEO (uy) is sufficient, the action is
to maintain the current connection. If a candidate satellite
satisfies the condition in equation (1), the action is to perform a
handover. The action to maintain the connection is represented
as 0, and the action to select a candidate satellite is represented
as 1, expressed as a, = [0, 1].

The objective of the DQN-based LEO scheduling method
proposed in this paper is to enhance system throughput by
maximizing the UE’s received signal strength through timely
handovers. To achieve this, the reward (7;) assigned to the UE
agent is decomposed into the following components: received
signal strength (r,), UE data rate (r,), handover cost (r.), and
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Fig. 2: Training performance of each handover costs

TABLE I: RL simulation parameters

Parameter | Value
Discount factor y 0.98
Learning rate 0.001
Batch size, Buffer size | 32, 50000

service duration time (ry), with the total reward defined as r, =
rg +rqa+re +r1s. Specifically, r, is defined by the relationship
among the satellite channel bandwidth (B), the number of UE
(NV;), and s,, as shown in (2).

Ta = (16) xlogy (1+s,), 2

t

Additionally, to prevent frequent handovers, a penalty term
for handover cost, denoted as r,, is introduced to minimize the
number of handovers and maximize ry.

A key feature of DQN is its ability to enhance learning
stability by using experience replay samples stored in replay
memory as input to both the Q-network and the target network.
This setup allows the agent to select actions that minimize the
loss function (L) by periodically duplicating the Q-network to
create a target network, enabling faster learning. The target
value, which serves as the reference for forming the target
network, is defined in equation (3), while the loss value of the
DQN based on the agent’s actions is defined in equation (4).

Y, = r+ymax Q(s;41,d';0), 3)
L= (Y, —Q(s;,a1;6))*. ©))

III. PERFORMANCE EVALUATION

Experiments were conducted in a Python environment to
develop a deep reinforcement learning-based LEO scheduling
model, utilizing the training parameters listed in Table I. To
assess the performance of the scheduling technique, models
were created with varying handover costs as part of the reward
structure, with the outcomes shown in Fig. 2. As illustrated in
Fig. 2, setting the handover cost to zero results in frequent
handovers, leading to slower convergence. Conversely, apply-
ing a moderate handover cost leads to the fastest convergence
compared to other cost values. Furthermore, Fig. 3 depicts the
received signal strength of the terrestrial UE agent in relation
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Fig. 3: Agent received signal strength of each handover cost

TABLE II: LEO environment parameters

Parameter | Value
LEO altitude, Number of LEO | 600, 9
Frequency band Ka-band(20GHz)
UE characteristics VSAT

LoS probability scenario Suburban & Rural

to the handover cost. The training scenarios were aligned with
3GPP standards, as detailed in Table II. The findings show
that the received signal strength of the agent converges most
rapidly when a moderate handover cost is applied.

IV. CoNcLUSION

This paper explores a DQN-based scheduling technique
based on the handover mechanism for terrestrial UEs, con-
sidering the rapid mobility of LEO satellites. The proposed
approach sets the groundwork for future studies on predicting
optimal handover timing in scenarios with mega-constellations
of satellites and numerous terrestrial users, with possible
extensions utilizing multi-agent deep reinforcement learning
methods.
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