
Latency Analysis of Multi-Exit Split Federated
Learning via Testbed Implementation

Hyelee Lim, Atif Rizwan, and Minseok Choi
Department of Electronic Engineering, Kyung Hee University, Yongin, South Korea

E-mails: mary@khu.ac.kr, atifrizwan@khu.ac.kr, choims@khu.ac.kr

Abstract—Federated Learning (FL) offers a decentralized ap-
proach to training machine learning models across distributed
devices, addressing data privacy concerns and reducing com-
munication overhead inherent in centralized learning methods.
However, as deep neural networks (DNNs) increase in complex-
ity, the memory limitations of client devices pose significant
challenges, particularly in real-time applications. To overcome
these challenges, Split Learning (SL) has been proposed, which
partitions DNN models between client devices and a central
server, thereby reducing the burden on clients while maintaining
data privacy. This paper extends SL by integrating a multi-
exit strategy, allowing for early inference on less complex data
samples to further enhance inference speed and efficiency. We
validate our approach using a real-world testbed that replicates
actual communication environments, contrasting it with existing
methods under network conditions. Our results demonstrate that
the Multi-Exit Federated Split Learning (ME-FedSL) algorithm
not only reduces training and inference times but also improves
the feasibility of deploying complex DNN models in federated
learning environments, particularly in scenarios with bandwidth
constraints.

Index Terms—Federated learning, Split learning, Testbed im-
plementation

I. INTRODUCTION

In traditional centralized machine learning paradigms, large
datasets are transferred to a central server where the model
training occurs. This approach, while effective, results in
substantial communication overhead and raises significant
concerns regarding data privacy. To mitigate these challenges,
Federated Learning (FL) has emerged as a viable alternative.
FL facilitates the decentralized training of models directly on
distributed local data, eliminating the need to centralize the
data itself. Instead, only the locally trained model parame-
ters are transmitted to a central server for the construction
of a global model [1]. However, as deep neural networks
(DNNs) grow in complexity with deeper architectures, client
devices—which generally possess limited memory and compu-
tational resources compared to central servers—face consider-
able delays during the training or inference of these extensive
models. This performance gap underscores the critical need
for efficient model compression and optimization techniques,
particularly for real-time applications on client devices where
resource constraints are a key consideration.

To address the challenges of training DNNs on resource-
constrained client devices, Split Learning (SL) has emerged as
a promising solution. SL strategically divides a DNN model
into two separate model blocks and store them in the client
and server separately. In this method, the client device trains

the model up to the split layer and then sends the resulting
activations to the server, which continues the training for the
remaining layers [2]. This approach significantly alleviates
the computational load on client devices by limiting their
responsibility to only a portion of the model, thereby reducing
the overall resource demand compared to training the entire
DNN. Accordingly, SL addresses the limitations of FL on
the client side by reducing the computational and resource
demands, ultimately enhancing both training and inference
speeds on client devices with limited computational resources.

Neural networks, characterized by their hierarchical feature
extraction capabilities, have driven the development of increas-
ingly deep and complex models to achieve higher performance.
However, the addition of layers in a deep neural network, while
beneficial for accuracy, also results in increased latency and
computational overhead during inference. These challenges
are particularly problematic in real-time applications and on
devices with limited computational resources. To mitigate
these issues, [3] introduced a novel architecture that incorpo-
rates side branches into the neural network, facilitating early
inference. This design allows for test samples that can be
classified with high confidence at earlier layers to exit the
network without processing through all subsequent layers. In
result, more complex samples are forwarded to deeper layers,
while simpler ones are efficiently processed at earlier stages.
This early exit mechanism reduces the computational load
on the deeper layers, thereby enhancing inference speed and
making the model more suitable for real-time and resource-
constrained environments.

The authors of [2] argued that training time could be
improved, presenting results based on software simulations.
However, there is a scarcity of studies that have validated
these claims using actual testbeds. Although simulations can
consider limited resources and communication environments,
they do not fully replicate real-world communication condi-
tions and computational resources. To overcome these limita-
tions, this paper establishes a testbed using NVIDIA Jetson
Nano boards to reflect real communication environments and
resource constraints, aiming to validate the performance of the
proposed algorithm under realistic conditions. Additionally,
we integrate a multi-exit neural network architecture [3] into
the ME-SplitFed framework [2] to improve the inference
latency performance. Through this empirical validation, we
demonstrate that the proposed method can indeed improve
inference speed in practical environments.

524979-8-3503-6463-7/24/$31.00 ©2024 IEEE ICTC 2024

Fig. 1: Comparison of Algorithms

II. MULTI-EXIT SPLIT FEDERATED LEARNING
ALGORITHM

An early FL technique, FedAvg, involves multiple clients
independently training their local models on their respective
local datasets. The central server then aggregates the model
parameters from each client by computing a weighted average
to create a global model [1]. Specifically, the objective is to
learn a global model w that minimizes the global loss function:

F (w) =

K∑
k=1

nk

n
Fk(w), (1)

where Fk(w) represents the local loss function for client k, nk

is the number of data samples at client k, and n =
∑K

k=1 nk

is the total number of data samples across all clients.
The resulting global model w is then distributed to all

clients, who use it as the basis for further local training. The
local objective function for each client k is defined as:

Fk(w) =
1

nk

nk∑
i=1

ℓ(w,xi, yi), (2)

where ℓ(w,xi, yi) represents the loss function, and xi and
yi are the input data and the corresponding label for the i-th
data point in client k’s dataset, respectively. Through iterative
rounds of local training and global aggregation, FedAvg en-
ables distributed learning on individual devices while ensuring
that local data remains private. This process culminates in the
convergence of a global model w that optimizes the overall
loss function across all participating clients [1].

We first split the given deep learning model w into the
client-side model block wC and server-side model block wS .
For client k’s model, we denote client-side and server-side
model blocks by wC,k and wS,k, respectively. Different from
the existing split FL approach in [2], we allow early prediction
by adding auxiliary classifiers to the intermediate layers of the
given deep learning model, as [3] and [4] did. In particular,
the auxiliary classifier ϕ1 for the first early exit is added to
the cut layer of wC , and the auxiliary classifier ϕ2 for the
second early exit is added in the middle of wS . Without loss

of generality, we assume ∥wC∥0 ≪ ∥wS∥0 to save the storage
space of the client device.

At the beginning of the training phase, the parameter server
broadcasts an initial model w0 to all clients, i.e., w0,0

k = w0,
where wt,e

k is the local model of client k at the e-th local epoch
in the t-th global round. Every client independently performs
the local training process based on the mini-batch stochastic
gradient descent. Since we have three different exits, the client
should define a new multi-exit loss function including all the
loss functions from different exits, as given by

Fk(wk) = γ1fk(wC,k, ϕ1)+γ2fk(wk, ϕ2)+(1−γ1−γ2)fk(wk),
(3)

where fk(wC,k, ϕ1) and fk(w, ϕ2) are the loss functions of
two early exits, and fk(w) is the loss function obtained at the
final layer of w. We can control the performances of early
predictions by controlling γ1 and γ2, but we assume γ1 =
γ2 = 1/3 in this paper to focus solely on the impact of model
split and multi-exit architecture on the training and inference
latency. Based on the multi-exit objective function in 3, client
k updates its local model as given by

wt,e+1
k ← wt,e

k − η∇Fk(w
t,e
k), (4)

where η is the learning rate. Here, to calculate Fk(w
t,e
k), we

need to obtain the loss functions of the server-side model
block. Therefore, client k uploads the activation values of the
cut layer φt,e

C,k of wt,e
C,k with respect to the input xi, denoted by

aC,k(φ
t,e
C,k;xi), and its label yi to the server every local epoch

of the local training process. The client use aC,k(φ
t,e
C,k;xi)

to update the client-side model branch ϕ1 and transmits the
aC,k(φ

t,e
C,k;xi) and loss ℓϕ1 = fk(wC,k, ϕ1) to the server.

Then, the server continues the forward propagation process
with aC,k(φ

t,e
k ;xi) for its model block, wt,e

S,k to calculate
and computes the activations aS,k(φ

t,e
S,k;xi) on server-side

cut layer φt,e
S,k. These activations are then used to compute

fk(wk, ϕ2) and fk(w
t,e
k). Then, the server performs the back-

propagation process and delivers the gradient of the cut layer,
denoted by gk(φ

t,e
C,k), and loss function values, fk(w

t,e
k , ϕ2)

and fk(w
t,e
k) to client k. This process iterates for E local

epochs, and we have wt,E
k = [wt,E

C,k,w
t,E
S,k].

After E local epochs, the model aggregation step begins. all
clients upload their updated client-side model blocks, wt,E

C,k, to
the server, and the server takes the weighted average of them,
as given by

w̄t
C =

K∑
k=1

nk

n
wt,E

C,k. (5)

Afterwards, the aggregated client-side model block w̄t
C is

broadcasted to all clients, and clients set wt+1,0
C,k ← w̄t

C as
an initial model for the next global round. Here, note that we
do not aggregate the server-side model blocks as the authors
of [2] did. Algorithm 1 summarizes the ME-FedSL approach.

525

Algorithm 1 ME-FedSL

Input: Dataset Dk for client k, Initial Model Weights w0,0
k ,

Global Rounds T , Local Epochs E, Batch Size B
Output: wT

k = [wT
C,k,w

T
S,k]

1: Register client on server (using client ID);
2: for global round t ∈ {1, . . . , T} do
3: for each client k ∈ {1, . . . ,K} in parallel do
4: for local epoch e ∈ {1, . . . , E} do
5: for each mini-batch b ∈ {1, . . . , B} do
6: Extract mini-batch Db

k ⊂ Dk

7: Client-side
8: Compute intermediate output: aC,k(φ

t,e
C,k;D

b
k)

and ℓϕ1 = fk(w
t,e
C,k, ϕ

t,e
1 ;Db

k)

9: Send aC,k(φ
t,e
C,k;D

b
k), ℓ

ϕ1 and y to server
10: Server-side
11: Update server model wt,e

S,k using
aC,k(φ

t,e
C,k;D

b
k)

12: Compute aS,k(φ
t,e
S,k;D

b
k)

13: ℓϕ2 ← fk(w
t,e
S,k, ϕ

t,e
2 ; aC,k(φ

t,e
C,k;D

b
k), y)

14: ℓw ← fk(w
t,e
S,k; a

t,e
C,k, y)

15: Compute ℓavg using Eq. (3)
16: Server-side back propagation and compute gra-

dients gk(φ
t,e
C,k)

17: Send gradients gk(φ
t,e
C,k) and ℓavg to client

18: Client-side
19: Update client model using received gradients

gk(φ
t,e
C,k)

20: wt,e+1
C,k ← wt,e

C,k − η∇gk(φ
t,e
C,k)

21: end for
22: end for
23: Client: Send updated local weights wt,E

C,k to server
24: end for
25: Server: Aggregate client-side models using Eq. (5)
26: Client: Receive global model weights w̄t

C from server
27: Client: Update client model: wt,E

C,k ← w̄t
C,k

28: end for

III. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Implementation Setup

For the testbed experiments, five Nvidia Jetson Nano de-
vices were used as clients, and the server’s software environ-
ment included Windows 11, Python v3.10.9, PyTorch v2.0.1,
CUDA v11.7, and CuDNN v8.5.0. The hardware configuration
for the server consisted of a desktop equipped with a GTX
1660 SUPER GPU and an Intel i5-11660k CPU. The Nvidia
Jetson Nano devices operated on Ubuntu 18.04, with Python
v3.6.9, PyTorch v1.8.0, CUDA v10.2.89, and CuDNN v8.0.0.
The hardware specifications of the Jetson Nano included a
128-core NVIDIA Maxwell GPU and a Quad-Core ARM A57
CPU. The communication environment was wireless, utilizing
an ipTIME A2004MU router that supports both 5GHz and
2.4GHz bandwidths. The wireless network cards inserted into
the Jetson Nano devices were Intel 8265NGW, supporting

a maximum speed of 867Mbps on the 5GHz band. The
CIFAR-10 dataset was used, with each client following an
IID distribution without overlap. The network model employed
for training was ResNet-110, a simplified version of the
original ResNet model with reduced ResBlock feature sizes.
The training hyperparameters were set as follows: 20 global
rounds, 3 local epochs, a batch size of 32, and a learning
rate of 0.001. The Adam optimizer (betas of 0.9 and 0.999)
and the cross-entropy loss function were used. Inference was
performed using the CIFAR-10 test dataset, consisting of
10,000 samples, with a batch size of 32. This setup provided a
standardized environment for evaluating the model’s inference
performance, allowing for the measurement of both prediction
accuracy and processing speed.

The server and client exchange data through TCP socket
communication. The server waits for connection requests from
the client, and the client initiates a connection to the server.
During this process, both the server and the client create
sockets. The server binds its socket to a specific IP address
and port number, waiting for connection requests from clients.
The client sends a connection request using the server’s IP
address and port, and the server accepts this request. In our
experiment, the server can create a single socket, so clients
have to wait for uploading their model parameters while the
other one is communicating with the server. In addition, before
data transmission begins, a connection must be established
through a 3-way handshake, which involves multiple signal
exchanges between both sides. Similarly, when terminating
the connection, a 4-way handshake is required. As a result,
communication overhead can arise during both the connection
setup and termination phases; however, their latency is not
really significant compared to the computation delay at the
client device and communication latency.

We compare the ME-FedSL with the existing approaches of
ME-SplitFed [2] and FedAvg [1] in our testbed implementa-
tions using NVIDIA Jetson Nano boards. Note that the clients
of FedAvg store and compute the full model and ME-SplitFed
allows clients to exchange the activation and gradient values
with the server in the training phase. On the other hand, in the
inference stage, ME-SplitFed always needs to compute the full
model to get the final prediction result. Also, we summarize
the simulation environments with different bandwidth and
computing resource availability.

TABLE I: Evaluation of network bandwidth performance.

Bandwidth (Mbits/sec)
Maximum Minimum

Server Jetson Nano Server Jetson Nano
receiver receiver sender receiver receiver sender

184 185 186 66.1 66.4 67.4

1) Normal Setting: For the normal setting, a wireless
802.11ac (5G) network, which supports theoretical maximum
speeds up to 650 Mbps (TX Bitrate: 650.0 MBit/s, VHT-MCS
7, 80MHz, short GI, VHT-NSS 2), along with the Jetson Nano
boards’ GPU clock set to 921 MHz and the CPU clock set to

526

1.5 GHz on all quad cores for maximum performance, are
assumed.

2) Bandwidth Performance Degradation: A wireless
802.11n (2.4G) network, with a maximum achievable commu-
nication rate of 270 Mbps (TX Bitrate: 270.0 MBit/s, MCS
14, 40MHz, short GI), along with the Jetson Nano boards’
GPU clock set to 921 MHz and the CPU clock set to 1.5 GHz
on all quad cores for maximum performance, are assumed.

B. Experimental Results

Fig. 2: Normal Setting Experiment; Overall Algorithm Results

1) Baseline Experiment: This experiment was conducted
under maximum bandwidth conditions, with the Jetson Nano
devices operating at their maximum GPU clock speed. During
the experiment, the average communication speed between
the server and the Jetson Nano devices was measured at 185
Mbits/sec, as shown in Table 1, which presents the results of
the average bandwidth speed experiment between the desktop
and Jetson Nano. The training results visualized in Figure
2 illustrate the number of global rounds required to reach
the target accuracy. The time required for each algorithm to
achieve the target accuracy of 95% was calculated as follows,
as shown in Table 2: ME-FedSL 20,691.71 seconds, ME-
SplitFed 8,757.20 seconds, and FedAVG 55,976.03 seconds.
Among these, FedAVG, which requires the most computation,
had the longest round time, averaging 3,292.7081 seconds
per round. ME-FedSL and ME-SplitFed are algorithms that
split the model between the client and server for training.
Compared to FedAVG, they require less communication and
computation per round, resulting in faster training times.
Notably, ME-FedSL employs a branch structure that allows
for early processing of some data on the client side, leading to
additional performance improvements over ME-SplitFed. Test
results showed that ME-FedSL, utilizing the branch structure,
processed the entire test dataset approximately 0.1023 seconds
faster than ME-SplitFed(Table 3). These findings demonstrate
that the introduction of a branch structure in ME-FedSL can
significantly enhance training and inference performance. This

is particularly beneficial in applications where real-time per-
formance is crucial, as the branch structure in ME-FedSL en-
ables quicker predictions, thus improving overall performance.
Moreover, ME-FedSL shows potential for maintaining high
performance in resource-constrained environments, proving to
be more efficient than FedAVG in scenarios with sufficient
communication bandwidth. FedAVG’s slower performance is
primarily due to its approach of training the entire model
and uploading model weights to the server at the end of
each round, leading to higher computation and communication
costs. In contrast, ME-FedSL and ME-SplitFed algorithms
split the model between the client and server, distributing the
computational load and reducing the frequency and volume
of data transmissions, resulting in faster training times. As
shown in the test speed comparison in Table 3, ME-FedSL
completed tasks faster than ME-SplitFed, likely due to the
branch mechanism that allows test samples to be processed
more quickly. These results suggest that split learning-based
algorithms can significantly improve real-time performance
and that ME-FedSL may be more advantageous than FedAVG
in environments with high computational and communication
costs.

2) Bandwidth Variation Experiment: This experiment was
conducted under minimum bandwidth conditions, based on
the Baseline experiment. During this experiment, the average
communication speed between the server and Jetson Nano
devices was measured at 66 Mbit/s, approximately 2.8 times
lower than the maximum bandwidth, as shown in Table 1.
The time required for each algorithm to reach the target
accuracy of 95% was calculated as follows, as shown in
Table 2 and Figure 2: ME-FedSL 36,265.27 seconds, ME-
SplitFed 17,760.90 seconds, and FedAVG 55,637.99 seconds.
When comparing the time per round with the Baseline, ME-
FedSL and ME-SplitFed exhibited a much larger increase
in time per round compared to FedAVG, as ME-FedSL and
ME-SplitFed require communication at each iteration during
training, whereas FedAVG only transmits model weights.
In bandwidth-constrained environments, the communication
overhead for ME-FedSL and ME-SplitFed was significantly
higher than that for FedAVG. This is because split learning
algorithms involve more frequent and larger data exchanges
between the client and server, leading to a sharp decrease
in training speed as the bandwidth narrows. On the other
hand, FedAVG, with its lower communication frequency and
only model weight transmission, maintained relatively stable
training times despite reduced bandwidth. When the bandwidth
was reduced, the inference process for ME-FedSL exhibited
an additional delay of 0.1066 seconds, while ME-SplitFed
showed a delay of 0.1343 seconds. Despite this, ME-FedSL,
which utilizes a branch structure, still maintained a faster test
speed by approximately 0.1299 seconds compared to ME-
SplitFed ,as shown in Table 3. This suggests that ME-FedSL
can deliver relatively higher performance even in environments
with limited bandwidth, thanks to its efficient computation
distribution and rapid prediction capabilities. The structural
advantage of ME-FedSL’s branch mechanism particularly con-

527

TABLE II: The latency of performing a global round in the training phase for the baselines [sec]

Setting Normal Limited bandwidth
Algorithms ME-FedSL ME-SplitFed FedAvg ME-FedSL ME-SplitFed FedAvg

min 2496.8066 1692.2857 3276.9476 4424.3317 3449.1432 3244.9869
max 2681.5471 1884.4061 3306.4212 4762.1945 3597.1446 3319.4396
avg 2586.4464 1751.4414 3292.7081 4533.1592 3552.1811 3272.8231

TABLE III: The latency of predicting the given test set in the inference phase for the baselines [sec]

Setting Normal Limited bandwidth
Algorithms ME-FedSL ME-SplitFed ME-FedSL ME-SplitFed

min 0.020989 0.019996 0.020508 0.020998
max 0.059512 0.057134 0.052027 0.053602
avg 0.026972 0.027299 0.027314 0.027730
total 8.415221 8.517521 8.521905 8.651830

tributed to maintaining the model’s inference capabilities and
real-time responsiveness effectively, even under degraded com-
munication conditions. These findings suggest that FedAVG
may be more advantageous in environments with poor com-
munication conditions, and that split learning algorithms, like
ME-FedSL, require optimization based on the communication
environment. Furthermore, additional experiments are neces-
sary to evaluate the performance of these algorithms under
various bandwidth conditions to better understand the impact
of communication environments on learning performance. By
doing so, we can identify communication optimization strate-
gies to maximize the efficiency of split learning algorithms,
thereby enhancing their applicability in real-world scenarios.

IV. CONCLUSION

This paper compares and analyzes three algorithms—ME-
FedSL, ME-SplitFed, and FedAVG—to enable effective learn-
ing in environments with limited communication speed. The
experimental results demonstrate that ME-FedSL and ME-
SplitFed improve real-time performance due to their split
structure and the use of branches for rapid predictions. How-
ever, when bandwidth was reduced, both ME-FedSL and
ME-SplitFed experienced a significant increase in communi-
cation overhead, leading to slower training times compared
to FedAVG. Despite its higher computational cost, FedAVG
outperformed in environments with limited communication
speed due to its lower communication frequency and model
weight transmission, which prevented significant drops in
learning speed even under poor communication conditions.
These findings highlight the importance of considering both
computational resources and communication constraints when
selecting an algorithm, suggesting that the optimal approach
must be tailored to the specific communication environment.
Additionally, the study suggests that while ME-FedSL’s branch
mechanism provides structural advantages in real-time re-
sponsiveness, further optimization is necessary to enhance its
adaptability and efficiency in bandwidth-constrained scenarios.
By refining these split learning algorithms, particularly ME-
FedSL, their practical applicability in diverse communication

environments can be significantly improved, ensuring more
efficient learning under various conditions.

ACKNOWLEDGMENT

This work was supported in part by Institute of Infor-
mation & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government(MSIT)
(No.2021-0-02201, Federated Learning for Privacy-Preserving
Video Caching Networks), in part by the National Research
Foundation of Korea(NRF) grant funded by the Korea goven-
ment(MSIT) (NRF-2022R1C1C1010766), and in part by NRF
grant funded by MSIT (No. 2022R1A4A3033401).

REFERENCES

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B.
Agüera y Arcas, “Communication-efficient learning of deep net-
works from decentralized data,” arXiv, 2023. [Online]. Available:
https://arxiv.org/abs/1602.05629

[2] C. Thapa, M. A. P. Chamikara, S. Camtepe, and L. Sun, “SplitFed: When
federated learning meets split learning,” arXiv, 2022. [Online]. Available:
https://arxiv.org/abs/2004.12088

[3] S. Teerapittayanon, B. McDanel, and H. T. Kung, “BranchyNet: Fast
inference via early exiting from deep neural networks,” arXiv, 2017.
[Online]. Available: https://arxiv.org/abs/1709.01686

[4] D.-J. Han, D.-Y. Kim, M. Choi, C. G. Brinton, and J. Moon, “SplitGP:
Achieving both generalization and personalization in federated learning,”
arXiv, 2023. [Online]. Available: https://arxiv.org/abs/2212.08343

528

