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Abstract—Aerial access networks (AANs), comprising un-
manned aerial vehicles (UAV), high-altitude platforms (HAPs),
and low-earth orbit (LEO) satellites, are rapidly emerging as a
critical component of next-generation communication systems.
Their dynamic nature, heterogeneous composition, and vast
coverage area pose significant challenges for network manage-
ment and optimization. Generative artificial intelligence (GenAI),
renowned for its ability to generate new content, offers a
promising solution to these challenges. In this paper, we explore
the applications of GenAI in AANs in recent studies. We also
identify key challenges and outline promising research directions.

Index Terms—aerial access network, generative AI, recent
studies, future outlook.

I. INTRODUCTION

Mobile networks are rapidly evolving from 5G to 6G, with
each generation offering significant improvements. Although
5G has already made a positive impact, the full potential of 5G
can only be realized through the development of 5G-Advanced
systems [1]. Simultaneously, research into the next-generation
6G technology is underway, exploring uncharted territories to
meet future Internet of Things (IoT) demands. Central to the
vision of a unified 6G network infrastructure is the integration
of non-terrestrial components. Aerial access networks (AANs)
have emerged as a viable technology to address the growing
need for high-speed, ubiquitous connectivity [2]. By offering
rapid deployment, extended coverage, and improved resilience,
AANs complement traditional terrestrial networks, particularly
in challenging environments such as disaster-prone areas. To
fully leverage the capabilities of AANs in 5G-Advanced and
6G, overcoming challenges related to their dynamic topology,
heterogeneous nature, and resource constraints is crucial. In-
telligent solutions are essential for the efficient operation of
these networks [2], [3].

Reinforcement learning (RL) emerges as a promising
paradigm for constructing intelligent control mechanisms
within AANs [3]–[6]. RL agents, through their interactions
with the environment and the receipt of rewards, are capa-
ble of learning to make optimal decisions in complex and
dynamic settings. However, RL agents typically require a
substantial number of training episodes to converge to opti-
mal policies, posing a significant challenge for AANs. The
acquisition of large-scale real-world training datasets is often
arduous, and RL algorithms frequently suffer from sample

inefficiency, hindering their application in AAN environments.
Recently, the convergence of cutting-edge technologies, in-
cluding transformer architectures, deep learning algorithms,
and Graphics Processing Units (GPUs)-accelerated computing,
has fueled the rapid growth of generative artificial intelligence
(GenAI) [7]. This technological convergence has led to the
development of highly capable GenAI models, especially
Large Language Models (LLMs) [8], including the renowned
generative pre-trained transformers (GPTs). The impressive
performance of GenAI models (e.g., OpenAI’s GPT-4) and
their accessibility through user-friendly interfaces have made
text and image generation a common part of everyday life.
GenAI is now revolutionizing various industries and emerging
applications, transforming the world around us.

Motivated by the immense potential of GenAI, recent re-
search has explored its application in the wireless communi-
cation domain. For instance, the study [9] explored large AI
models in 6G, covering their potential, challenges, and future
prospects. The work [10] investigated how large GenAI models
can be utilized for designing, configuring, and operating
wireless networks. The paper [11] explored the potential of
UAVs in enhancing mission-critical networks and also intro-
duced GenAI as a promising solution for future UAV-assisted
systems. In [8], the authors examined the substantial benefits
of leveraging UAV-LLM integration for the advancement of
autonomous systems. By integrating GenAI into AANs, net-
work operators can optimize network performance, improve
resource utilization, and facilitate intelligent decision-making.
This paper offers a survey of the current research on GenAI-
powered AANs, emphasizing key contributions and identifying
promising avenues for future exploration.

II. AERIAL ACCESS NETWORKS

Before delving into the role of GenAI, it is essential to
understand the AANs and their challenges. As illustrated in
Fig. 1, AANs, employing aerial platforms such as UAVs,
HAPs, and satellites, can offer a cutting-edge solution to meet
the increasing demand for high-speed, reliable connectivity,
especially in remote or disaster-struck regions [2], [3]. UAVs
operate at various altitudes, from hundreds to thousands of
meters, covering several kilometers. They are easy to use,
deploy, and move. They can form networks and relay signals.
However, limited battery life restricts their operation to tens
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Fig. 1. Basic architecture of aerial access networks.

of minutes to several hours. HAPs, positioned in the strato-
sphere 20-50 kilometers above the ground, remain relatively
stationary [5]. They form networks using optical connections.
Their high altitude allows for wide coverage, reaching up
to 100 kilometers in diameter at a 10-degree elevation. This
means fewer HAPs are needed for extensive coverage, ac-
celerating deployment. Compared to satellite systems, HAP
communication systems offer lower costs, reduced latency,
faster construction, and higher capacity.

A key advantage of AANs is their rapid deployment,
making them ideal for emergencies and temporary events.
Additionally, their flexibility allows for easy repositioning
of aerial platforms to adapt to changing connectivity needs.
AANs can expand network coverage to areas that are difficult
or expensive to reach with traditional infrastructure [6]. In
some cases, AANs offer a cost-effective alternative to ground-
based infrastructure. However, AANs also introduce several
new challenges, including:

• Dynamic Network Topology: UAVs constantly move,
leading to rapid changes in network topology, which
requires efficient and adaptive resource allocation algo-
rithms.

• Heterogeneous Traffic Patterns: AANs serve diverse users
with varying traffic demands, necessitating intelligent
traffic management and load-balancing strategies.

• Interference Management: Co-channel interference
among UAVs and terrestrial base stations can
degrade network performance, demanding sophisticated
interference mitigation techniques.

• Energy Efficiency: UAVs have limited battery life, neces-
sitating energy-efficient operation and resource allocation
to prolong network lifetime.

• Security and Privacy: AANs are vulnerable to various
security threats, such as eavesdropping and jamming,
while also handling sensitive user data.

To achieve optimal performance, advancements in commu-
nication system design must be paired with effective artificial
intelligence solutions that integrate AANs into 6G systems.

III. GENAI FOR AERIAL ACCESS NETWORKS

A. GenAI

GenAI is a subfield of artificial intelligence (AI) that focuses
on developing systems capable of producing novel and creative
content, including text, images, audio, and video [7]. Tradi-
tional AI models analyze data to make predictions or classi-
fications. On the other hand, generative models learn patterns
from existing data and produce new data instances with similar
characteristics. GenAI comes in two forms: model-based and
data-based. Both types learn from data, but data-based models
use algorithms, while model-based models rely on predefined
structures. Numerous GenAI models have been developed as
follows.

• Generative Adversarial Networks (GANs) [12]: GANs
comprise a generator network that synthesizes new data
samples and a discriminator network tasked with discern-
ing between authentic and generated data. The adversarial
interaction between these networks drives the generator
to produce increasingly realistic outputs.

• Variational Autoencoders (VAEs) [13]: A VAE employs
a probabilistic framework to encode and decode data.
The encoder maps inputs to a latent space distribution,
while the decoder generates outputs from samples drawn
from this distribution. Neural networks are trained to
learn these probabilistic mappings, resulting in a powerful
encoding-decoding system.

• Diffusion Models [14]: These utilize a two-step process.
A forward diffusion process progressively adds Gaussian
noise to an input, while a reverse diffusion process trains
a model to reverse this process and recover the original
data. This approach aims to maximize the likelihood of
the training data.

• Transformer-based Models [15]: A transformer mainly
includes tokenizers, embedding layers, and transformer
layers. The major idea behind the transformers is called
attention or self-attention which enables detection of the
subtle relationships of sequential data even when the data
elements are distant. A self-attention layer encodes each
input entity with the global contextual information from
the complete input sequence. Furthermore, multi-head
attention uses multiple self-attention blocks to capture
multiple relationships in the input sequence, allowing
for parallel processing and scalability to highly complex
models and large data sets. Models such as OpenAI’s
GPT-4 and DALL-E are examples of transformer-based
GenAI.

B. Recent Studies on GenAI for AANs

GenAI offers significant advantages over conventional AI
methods in the context of aerial access networks. Its ability to
generate new content, learn from data, and adapt to changing
conditions makes it a valuable tool for addressing the unique
challenges of aerial networks. By leveraging the power of
GenAI, we can develop more resilient, efficient, and secure
aerial communication systems. In the following, we examine
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contemporary studies focusing on the application of GenAI to
AANs.

A 6G framework proposed in [16] leverages actor-critic
reinforcement learning and generative models to estimate line-
of-sight probabilities and schedule traffic across terrestrial and
non-terrestrial links. By transforming a partially observable
environment into a fully observable one using GANs and
VAEs, the agent learns optimal policies for channel selection
and traffic scheduling, minimizing end-to-end losses and band-
width usage. Simulation results demonstrate the effectiveness
of this approach in achieving optimal transmission policies and
reducing network overhead.

The study [17] proposed a Long Short-Term Memory
(LSTM) and GAN-based method for predicting satellite net-
work traffic. To address the challenges posed by the dynamic
nature of satellite networks, the authors construct a simulated
dataset reflecting population distribution density. To mitigate
overfitting during training, the dataset is augmented using
GAN. The LSTM-based model trained on this augmented
dataset achieves a prediction accuracy of 95.43%, offering
valuable insights for coordinating satellite network resource
scheduling.

The paper [18] proposed a novel channel model for 5G-
enabled maritime UAV communications utilizing millimeter
wave (mmWave) technology. The model leverages an LSTM-
based Distributed Conditional GAN to accurately estimate
channel state information (CSI) for each beamforming direc-
tion. It is also employed to design a UAV network where each
UAV learns mmWave CSI for all distributions. Comparative
analysis with other state-of-the-art approaches demonstrates
the superior performance of the proposed model in terms of
accuracy, learning speed, and downlink data rates.

DroneDefGANt [19] is a GenAI-based approach designed
to safeguard AAN from both external and internal threats.
By leveraging the power of generative adversarial networks
(GAN) and transformer models, DroneDefGANt effectively
detects and prevents cyberattacks such as GPS spoofing,
jamming, and actuator faults. The adaptive learning of the
model ensures its resilience against evolving threats. Through
rigorous evaluations using synthetic datasets, DroneDefGANt
outperformed traditional AI models, demonstrating excep-
tional accuracy and robustness, especially in the face of noise-
induced disturbances.

The work [20] proposed a new data augmentation algorithm
for AI-enabled acquisition, tracking, and pointing systems in
free-space optical communication. The algorithm combines
wavelet transform with the fusing-and-filling GAN model to
generate more diverse and detailed synthetic training data.
Experimental results validate the superior performance of the
proposed method over the baseline, as evidenced by significant
improvements in image quality metrics.

The paper [21] introduced a federated learning-based GAN
(FL-GAN) for air-to-ground channel estimation in mmWave
wireless networks. This decentralized approach overcomes the
limitations of centralized methods by learning from diverse
data distributions across different geographical regions. The

FL-GAN generates realistic channel patterns without requiring
prior data analysis, ensuring adaptability to various environ-
ments. The FL-GAN’s effectiveness in generating realistic
synthetic data is confirmed by evaluation metrics such as
Kullback-Leibler divergence and Wasserstein distance.

The DP-GAN scheme [22] addresses the limitations of
existing drone pilot identification systems by employing a
GAN-based approach. The scheme utilizes an LSTM-based
generator to estimate the distribution of collected data and
generate realistic flight data, thereby improving identification
accuracy. A three-stage adversarial training strategy further
optimizes the generator and discriminator, enhancing overall
performance. Experimental results demonstrate the effective-
ness of the DP-GAN scheme in achieving high accuracy
rates under various conditions. Due to its low computational
overhead, the DP-GAN scheme is well-suited for deployment
on drone platforms for real-time pilot identification.

In [23], the authors introduced a novel convolutional
autoencoder-aided sparse code multiple access system for
satellite-terrestrial communications, utilizing a conditional
Wasserstein generative adversarial network with gradient
penalty (CWGAN-GP)-based channel modeling approach. The
system leverages convolutional neural networks to construct
the encoder and decoder, mitigating the curse of dimen-
sionality. By using the received signal corresponding to the
pilot symbol as conditional information, the CWGAN-GP
effectively models the satellite-terrestrial fading channel. The
proposed approach demonstrates superior performance over
existing methods, as evidenced by lower bit error rates, block
error rates, and computational complexity.

The study [24] examined rate-splitting multiple access net-
works enhanced by aerial intelligent surfaces with the aim of
optimizing the trajectories of UAVs for user tracking. Two
models, utilizing LSTM and Transformers, are developed to
predict UAV positions. The Transformer-based model demon-
strates superior robustness to variations in user locations,
leading to more accurate predictions and consequently higher
sum rates compared to the LSTM-based model.

In [25], the authors explored the potential of LLMs as
a cornerstone for intelligent network control within 6G in-
tegrated terrestrial and non-terrestrial network environments.
The proposed framework is structured to incorporate several
critical components, each playing a pivotal role in ensuring
optimal and intelligent control across the integrated network.

C. Challenges

While there is burgeoning interest in the application of
GenAI to AANs, several significant challenges persist. The
integration of GenAI into the AAN system necessitates real-
time processing and decision-making capabilities to ensure
optimal network performance. The dynamic and multifaceted
nature of the AAN demands systems and algorithms that
can process and react swiftly. Any latency in response could
severely compromise the network’s effectiveness, highlighting
the urgency of designing efficient and responsive systems.
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Furthermore, the introduction of GenAI into AAN intro-
duces additional computational and communication complex-
ities. Sophisticated GenAI technologies, such as GANs and
VAEs, can increase computational overhead and processing
time. It is essential to efficiently manage this integration
overhead to ensure that the enhanced capabilities do not
compromise system performance or network efficiency.

The distributed nature of AANs poses significant scalability
challenges for GenAI integration. As the network expands
and the volume of data processed increases, the demand for
GenAI technologies will grow exponentially. The ability of
GenAI models to scale effectively without compromising per-
formance or network reliability is paramount for the successful
deployment of GenAI-enabled AANs. This requires efficient
distributed training and inference techniques, as well as robust
mechanisms for handling large-scale data sets and complex
network topologies.

IV. FUTURE OUTLOOK

A. Hybrid AI Architectures

The fusion of GenAI with other AI paradigms, e.g., re-
inforcement learning and deep learning, promises to elevate
the effectiveness and resilience of AANs. For instance, the
synergistic combination of GANs with deep reinforcement
learning, as in [26], can result in highly skilled reinforcement
learning agents exposed to a diverse range of network condi-
tions. To safeguard data privacy while training GenAI models
across multiple aerial platforms, the development of distributed
learning frameworks, such as federated learning, is impera-
tive [21]. Such frameworks can enable collaborative model
training without compromising the confidentiality of sensitive
data. Ensuring the transparency and interpretability of GenAI
models is a paramount concern. Investigating techniques to
make these models more explainable will facilitate greater trust
and understanding of their decision-making processes.

B. Multi-modal Integration for Holistic Connectivity

The integration of diverse data modalities, including images,
videos, audio, and radar scans, from satellites to ground sen-
sors, offers a rich source of information for AANs. GenAI can
play a pivotal role in seamlessly fusing this multimodal data,
providing a more comprehensive understanding of the operat-
ing environment. By integrating multi-modal data, UAV net-
works can generate a holistic environmental model, enabling
more informed and contextually aware decision-making. The
protection of GenAI models against adversarial attacks is a
critical challenge. Lightweight and effective solutions, poten-
tially leveraging large language models for data recovery and
reinforcement learning for enhanced security, are necessary to
defend against the vulnerabilities exploited by these attacks.

C. Large Language Models

LLMs have emerged as powerful tools for optimizing ex-
isting systems by learning from application behavior. Their
ability to understand, generate, and translate human-like text,
honed through extensive training on large datasets, makes them

invaluable across various domains, including robotics, health-
care, finance, education, customer service, and content cre-
ation. Recent technological breakthroughs have significantly
enhanced aerial platform capabilities. Modern aeria platforms
such as UAVs and HAPs are now equipped with powerful
hardware that allows them to run LLMs directly on board,
reducing dependence on cloud-based processing. This enables
them to perform tasks such as real-time language translation,
communication during international surveillance missions, and
the analysis of complex sensor data using LLMs for dynamic
decision-making in critical scenarios [8], [25], [27].

For example, predictive maintenance applications employ
LLMs to anticipate network failures by analyzing historical
performance patterns, thereby substantially reducing downtime
and maintenance expenses. In the realm of personalization,
LLMs leverage user data to customize services, enhancing user
experiences through tailored content delivery and service of-
ferings. Moreover, in AAN-assisted smart cities, LLM-driven
IoT applications optimize traffic flow and energy distribution,
contributing to more sustainable urban development. Finally,
in AAN-based autonomous systems, LLMs facilitate real-time
data processing, enabling autonomous IoT devices to make
informed decisions, thereby improving safety and efficiency.

D. Standardization and Real-World Deployments

While standards bodies such as 3GPP and O-RAN Alliance
have begun to embrace AI [1], the integration of GenAI in
communication network standards remains largely unexplored.
Standardization efforts should focus on ensuring interoperabil-
ity and compatibility between different GenAI models and
platforms. Future work should prioritize a gradual, systematic
approach to integrating GenAI or LLMs into AAN systems.
This will ensure compatibility, performance, and the ability
to adapt to evolving technologies through regular updates,
maintenance, and dedicated training. Moreover, conducting
large-scale field trials is essential to validate the performance
and benefits of GenAI-powered UAV networks in real-world
scenarios.

By addressing these issues, we can significantly advance
the reliability and effectiveness of mission-critical communi-
cations in AAN systems, paving the way for a more secure
and efficient future.

V. CONCLUSION

This paper has explored the transformative potential of
GenAI in revolutionizing AANs. By harnessing the capabili-
ties of GenAI, AANs can achieve significant advancements in
network management, optimization, and security. Our review
of recent studies highlights the effectiveness of GenAI in var-
ious AAN applications, demonstrating its potential to address
key challenges. While significant progress has been made,
several challenges remain, including computational overhead,
data privacy, and adversarial attacks. To fully unlock the
potential of GenAI in AANs, future research should prioritize
the development of more efficient algorithms, robust security
measures, and standardized frameworks.
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