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Abstract— This paper explores the integration of large pre-
trained models of language, vision, and action to enhance robot 
manipulation planning. By leveraging advanced language 
models such as GPT-4 and Gemini, task planning can be 
articulated in natural language, allowing for intuitive and 
precise task specifications. The paper describes task and motion 
planning (TAMP), which is crucial for robot operation, 
optimizing precise execution by considering the work 
environment and linking high-level decision-making with 
detailed motion control. 
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I. INTRODUCTION  
Recently, with the development of ultra-large generative 

AI models, the development of robotic artificial intelligence 
technology that enables autonomous performance of complex 
tasks in robot operation in a manufacturing environment is a 
global technology trend. To realize this, technology research 
is underway to recognize the work environment, understand 
tasks, and create operation procedures [1]. Prompt 
engineering methods to generate robot motion using Large 
Language Models (LLMs) was studied [2,3,4,5]. In order to 
plan and control more efficient robot movements based on this 
task generation method, various frameworks and optimization 
techniques are being studied [6,7,8,9]. Research was also 
conducted to provide the safety and predictability necessary 
for robots and people to collaborate through a robot task 
creation platform [10], and benchmarks to evaluate the 
performance of the robot task creation system were also 
reported [11]. In this paper, we are designing task generation 
for robot arm manipulation for assembling products. 

II. PROMPT ENGINEERING FOR TASK PLANNING 
In our approach, we use an LLM (GPT4) trained on a text 

corpus, enabling it to provide accurate function predictions 
based on specific instructions. We integrate perceived target 
position information and motion functions from the LLM into 
a code template, allowing the robot to execute tasks 
effectively. Task execution is managed hierarchically: long-
horizon tasks (over 10 motion functions) are considered first-
layer tasks and are broken down into short-horizon tasks by 
the LLM. Short-horizon tasks (fewer than 10 motion functions) 
are treated as second-layer tasks, with the LLM directly 
returning the necessary functions to accomplish them. Fig.1 
outlines a robotic assembly system that uses a camera to 
capture images, a Vision-Language Model (VLM) to analyze 
and identify objects, a task generator to create a task script, a 
task verifier to ensure feasibility, and a robot to execute the 
assembly tasks based on the verified script, integrating vision-
based recognition with language model-driven planning and 
execution. 

 
Fig.1 LLM-based task planning with Robot Manipulation 

III. SYSTEM ARCHITECTURE  

A. Robotic Arm Assembling Product System 
The core components of this robotic assembly system 

include a robotic arm equipped with a gripper, a vision system 
utilizing a camera for work environment recognition, and a 
control system for task execution. The operating procedure 
involves the camera capturing images of the workspace to 
identify the parts to be assembled. The vision system 
processes these images to determine the positions and 
orientations of the parts. The control system then directs the 
robotic arm to pick up the parts in the correct sequence and 
assemble them according to the predefined work order, 
ensuring precision and efficiency in the assembly process. 

 
Fig.2 Robotic Arm Assembling Product System 

 

B. LLM based Task Planner 
In Fig.3, the LLM-based Task Planner operates through a 

series of systematic steps to achieve robotic task generation 
and execution. The process begins with image capture and 
recognition, where a camera captures images of the work 
environment, focusing on a table where all objects are placed. 
Using YOLO and GPT-4, the system performs image 
recognition to determine the current state from the visual 
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information. This visual information is then converted into a 
text script, with the positions of the objects and the hand 
identified through joint values. Due to the probability of 
recognition error in the image recognition method, a Ground 
Prompt is generated by reorganizing the observation results 
into the image recognition results of GPT-4 and the list of 
objects recognized by YOLO. This Ground Prompt ensures a 
more accurate and reliable understanding of the work 
environment, combining the strengths of both GPT-4 and 
YOLO to mitigate errors and improve task planning and 
execution. 

 
Fig.3  LLM based Task Planner 

Ground Prompts are generated for all text scripts 
recognized by the vision recognition module. These prompts 
describe the current state and the goal task. The task generator 
then creates an action script by referring to the relevant skill 
set corresponding to the goal task, outlining the specific steps 
needed to accomplish the task. 

Next, the task verifier checks the generated action script to 
ensure it is appropriate and feasible. This involves validating 
the sequence of actions and their suitability for the task. Once 
verified, the action script is translated into robot manipulation 
commands, which are sent to the robot to control its 
movements and perform the task. 

Throughout this process, the system stores the object set 
for grounding, the robot's work skill set, and the action sets 
performed so far. This stored information is used to enhance 
the efficiency of future task generation, making the system 
more effective over time. This procedural flow ensures that 
the robotic system can autonomously recognize, plan, and 
execute tasks with high efficiency and accuracy. 

 

 
Fig.4  Test Input Image for Visual Grounding 

IV. SYSTEM EVALUATION 
We built a prototype system to deploy task planning 

generation for assembling various objects using a robotic arm. 
Our experimental setup comprises a UR5 robot arm, a 
RealSense L515 camera mounted on the robot's wrist, and a 
Robotiq 2F-85 gripper. The assembly model consists of three 
distinct part types: the cap, shaft, and spring. We conducted 
tests on 50 different scenarios by altering the position and 
orientation of the objects. To evaluate our system, we 
prototyped our architecture and conducted extensive testing.  

An example of a Ground Prompt is as follows. Fig. 4 
explains the results of observation through VLM Grounding 
with a script. Objects recognized in an image contain relevant 
information. The Ground Prompt is completed by combining 
this script with information such as the location and order of 
objects recognized through YOLO. However, there is a 
problem with incorrect recognition information in the middle 
of the script, such as identifying a white portable hard drive 
and a black smartphone incorrectly. To address this, the 
system includes a procedure to verify the Ground Prompt 
using a ground filter to remove inaccuracies, relying on Object 
Sets stored in memory. 

 
This picture shows a well-used office workspace. Here are the 
items visible in the image:  

A desk with a clutter of various office items. 

A desktop computer monitor with sticky notes attached to the 
bottom bezel. 

A traditional landline telephone to the left of the monitor. 

A white mug, possibly for coffee or tea, near the telephone. 

A wireless keyboard with a built-in trackpad on the right side and a 
wrist rest at the bottom. 

A wireless mouse to the left of the keyboard on a mouse pad. 

A black mouse pad with a wooden accent where the wrist rest is, 
and it also has a matching wooden stylus holder labeled "Logitech". 

Various cables and chargers on the desk. 

A pair of eyeglasses next to a black case to the right of the monitor. 

A white portable hard drive. 

A bottle of hand sanitizer behind the mug. 

A black smartphone to the right side of the desk. 

Assorted pens and markers in a clear holder behind the monitor. 

Other miscellaneous items like a pack of tissues, a key ring, and 
more sticky notes. 

 
      The Task Generator receives a Goal Task Script as input 
and generates Action Scripts from Ground Prompts. The 
following is an example of created Action Scripts. The unit 
actions of Action Scripts are created based on the Skill Set in 
memory. The Skill Set specifies robot operation procedures. 
The example below shows only a portion of the entire Action 
Script. The created Action Scripts are checked in the Task 
Verifier to see if they satisfy the Goal Task. If they are 
insufficient, the system goes through a repetitive loop to create 
additional Action Scripts. 

 
Testing Goal Task Script 
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l I am a robot with two hand arms. I want to clean this desk.  
Would you show me task sequences to cleaning this desk?  

 

Certainly! Here is a task sequence for cleaning and organizing the 
desk, broken down into steps. Since you have two hand arms, you 
should be able to grasp and manipulate objects similarly to a 
human: 

1. Remove Clutter: 

① Pick up any trash, such as empty snack packets or used 
tissues, and dispose of them in a waste bin. 

② Gather any dishes, like the mug, and set them aside to be 
washed or placed in a dishwasher. 

2. Organize Papers: 

① Collect all loose papers and sticky notes. 

② Sort through the papers, deciding what to keep and what to 
recycle. 

③ File important papers in a desk drawer or a filing cabinet and 
properly dispose of the rest. 

3. Sort Miscellaneous Items: 

① Place personal items like the key ring into a desk drawer for 
safekeeping. 

② Ensure that the glasses are placed in their case to prevent 
damage. 

 

V. LIMITATIONS AND FUTURE WORKS 
The prototype implemented to design this system and 

verify its functionality revealed several limitations: 
1. Recognition Accuracy: Despite using advanced models 

like GPT-4 and YOLO, the system still faces challenges 
with recognition accuracy. Misidentification of objects or 
incorrect interpretation of visual data can lead to errors in 
task execution. 

2. Real-Time Processing: The prototype may struggle with 
real-time processing, especially when handling complex 
tasks or large amounts of visual data. This can result in 
delays or reduced responsiveness in dynamic 
environments. 

3. Hardware Dependence: The performance of the system 
is highly dependent on the quality and specifications of the 
hardware used, including cameras and robotic arms. 
Limited hardware capabilities can restrict the overall 
effectiveness and precision of the system. 

4. Environmental Variability: The prototype may not 
perform consistently across different work environments. 
Variations in lighting, object appearance, or workspace 
layout can affect the accuracy of image recognition and 
task execution. 

5. Integration Complexity: Integrating various components, 
such as the vision system, task generator, and robot control, 
can be complex and prone to synchronization issues. 
Ensuring seamless communication and coordination 
among these components is a significant challenge. 

6. Scalability: The current prototype might have limitations 
in scaling up for more complex or larger-scale assembly 
tasks. Adapting the system to handle a broader range of 
tasks or more intricate assembly processes requires further 
development and optimization. 

7. Learning and Adaptation: While the system can generate 
tasks based on predefined skills and object sets, its ability 
to learn and adapt to new tasks or unexpected situations is 

limited. Enhancing its learning capabilities and 
adaptability is crucial for more versatile applications. 

8. Safety and Reliability: Ensuring the safety and reliability 
of the system, especially when interacting with humans or 
handling delicate tasks, remains a critical concern. The 
prototype needs robust safety mechanisms to prevent 
accidents and ensure dependable operation. 

Furthermore, our future research will focus on addressing 
the challenges of assembling real objects and tasks in diverse 
environments. We aim to improve system performance by 
enhancing the inference and generation of task planning 
scripts and action scripts during real-world deployment of our 
approach. 

VI. CONCLUSION 
In this paper, we propose a system for LLM-based robotic 

manipulation tasks using large models to generate robot 
control sequences that achieve a goal task. This system 
highlights the potential of LLMs to simultaneously handle 
both planning and motion control by utilizing object sets, skill 
sets, and action sets stored in memory. In the future, we will 
evaluate all functionalities of LLMs and execute robotic 
manipulation in real-time. 

ACKNOWLEDGMENT  
This work was supported by Electronics and 

Telecommunications Research Institute (ETRI) grant funded 
by the Korean government. [24ZR1100, A Study of Hyper-
Connected Thinking Internet Technology by autonomous 
connecting, controlling and evolving ways] and the 
Technology Innovation Program [24PR2110,Technology 
convergence of digital twin, artificial intelligence and robotics 
for AI-Robot based autonomous manufacturing in 
unstructured environments] funded By the Ministry of Trade, 
Industry & Energy(MOTIE, Korea)“. 

 

REFERENCES 
[1] Dhruv Shah, et al., “LM-Nav: Robotic Navigation with Large Pre-

Trained Models of Language, Vision, and Action,” arXiv preprint, 
arXiv:1909.12271, 2019. 

[2] Takahide Yoshida, et al., “From Text to Motion: Grounding GPT-4 
in a Humanoid Robot “ALTER3”, ”  arXiv preprint, 
arXiv:2312.06571v1, Dec, 2023. 

[3] Anonymous authors., “LLM+A: Grounding Large Language  Models 
in Physical World with Affordance Prompting,”  under review of 
ICLR 2024. 

[4] Yan Ding, et al, “Task and Motion Planning with Large Language 
Models for Object Rearrangement,” IROS 2023 

[5] Guangran Chen, et al., “Empowering Large Language Models on 
Robotic Manipulation with Affordance Prompting,” arXiv preprint, 
arXiv:2404.11027v1, April, 2024. 

[6] Lirui Wang, et al., “Gensim: Generating Robotic Simulation Task via 
Large Language Models,” ICLR 2024 

[7] Ishika Singh, et al., “ProgPrompt: Generating Situated Robot Task 
Plans using Large Language Models,”ICRA 2023. 

[8] Murtaza Dalal, et al., “Plan-Seq-Learn : Language Model Guided RL 
for Solving Long Horizon Robotics Tasks,”ICLR 2024 

[9] Antonio Sabbatella, et al., “Prompt Optimization in Large Language 
Models,” Mathematics, 2024.  

[10] Haokun Liu, et al., “ LLM-Based Human-Robot Collaboration 
Framework for Manipulation Tasks,”  arXiv preprint, arXiv:2207. 
04429v2, Aug, 2023.  

[11] Jae-Woo Choi, et al, “LoTa-Bench: Benchmarking Language-oriented 
Task Planners for Embodied Agents,” ICLR 2024  

 

544


