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Abstract—The field of 3D content creation has seen significant
progress through optimization-based methods, such as score
distillation sampling (SDS). Recently, DreamGaussian attempted
to combine SDS sampling and 3D Gaussian splatting to accelerate
the generation process but faced limitations in achieving precise
geometric accuracy. This paper introduces DreamSurfels, an im-
proved 3D content generation framework that enhances efficiency
and geometric accuracy. We replace the 3D Gaussian Splatting in
the original DreamGaussian with geometrically accurate Gaus-
sian Surfels. This approach achieves precise radiance fields with
cleaner normal and depth reconstructions. The proposed method
maintains the rapid generation capabilities of the DreamGaus-
sian, producing high-quality textured meshes from single-view
images in just 1 minute, while delivering substantial improve-
ments in geometric fidelity. Experiments validate the performance
of DreamSurfels, making it a robust solution for efficient and
accurate 3D content generation. These improvements pave the
way for more practical applications in industries such as game
design and digital media

Index Terms—Radiance Fields, Neural Rendering, Gaussian
Splatting, diffusion, SDS, 3D Generation

I. INTRODUCTION

As the demand for high-quality 3D content in various fields,
including entertainment, virtual reality, gaming, and industrial
applications, continues to grow, the need for more efficient
and accurate methods of 3D content generation has become
increasingly apparent. Traditional approaches to creating 3D
models, especially those that require high fidelity and pre-
cision, have often been time-consuming and computationally
expensive. The challenge lies in developing methods that not
only deliver high-quality 3D representations but also do so in
a time-efficient manner.

One of the most promising advancements in recent years
has been the use of diffusion-based techniques, particularly
in the realm of 2D image generation. These methods have
inspired new approaches to 3D content creation, leveraging the
power of 2D models to inform 3D geometry and appearance. A
significant breakthrough in this area came with DreamFusion
[1], which introduced Score Distillation Sampling (SDS). SDS
distills 3D geometry and visual features from state-of-the-art
2D generative models, effectively bridging the gap between
high-quality 2D and 3D content creation. This method also
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paved the way for optimization-based 2D lifting techniques,
including the use of Neural Radiance Fields [6] (NeRF), which
are capable of representing rich 3D information by capturing
detailed light-field data.

Despite the advancements, NeRF-based approaches face
significant challenges, particularly in terms of computational
efficiency. The high computational cost of rendering and
optimizing NeRF models results in long processing times,
making it less practical for real-time or large-scale 3D content
generation. This limitation has spurred further research into
alternative methods that can maintain quality while improving
efficiency.

In response to these challenges, DreamGaussian [2]
emerged as a solution aimed at reducing the computational
burden of 3D content generation. By integrating 3D Gaus-
sian Splatting into the generative process, along with mesh
extraction and texture refinement, DreamGaussian significantly
reduced the time required to generate 3D models. However,
while this approach achieved greater efficiency, it struggled
with accurately capturing fine geometric details. The volu-
metric nature of 3D Gaussian Splatting often led to issues
such as blurry outputs and problems with spatial densification,
particularly in scenarios involving thin or intricate surfaces.

To address these remaining limitations, we propose Dream-
Surfels, a novel 3D content generation framework designed
to enhance both the geometric accuracy and efficiency of
the generation process. Inspired by recent advances in 2D
Gaussian Splatting [4], DreamSurfels introduces the use of 2D
Gaussian primitives—each representing an oriented elliptical
disk—to represent 3D scenes. These 2D Gaussian primitives
inherently include surface normals, enabling precise surface
regularization through normal constraints. This allows for
cleaner normal and depth reconstructions, effectively overcom-
ing the geometric inaccuracies seen in previous methods.

DreamSurfels improves upon the 3D Gaussian Splatting
method used in DreamGaussian by replacing it with geomet-
rically accurate Gaussian Surfels. This innovation, combined
with the introduction of regularization terms such as depth
distortion and normal consistency, leads to significantly im-
proved geometric quality in 3D reconstructions. By leveraging
the explicit intersection between rays and the Gaussian Sur-
fels, DreamSurfels achieves superior accuracy in representing
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the geometry of complex surfaces, offering a more reliable
solution for applications that require high-fidelity 3D content.

Through extensive experiments, we demonstrate that
DreamSurfels not only enhances the geometric quality of 3D
reconstructions but also reduces the generation time, making
it a robust and efficient solution for real-world applications in
3D content creation.
Our key contributions are as follows:

• We adapt Gaussian Surfels as a new primitive for the
accurate and efficient generation of 3D content.

• We achieve geometrically precise radiance field gener-
ation from single-view images in a matter of minutes,
significantly improving the speed and quality of the
process.

II. PRELIMINARY

Before introducing our method, we review the key concepts
of 3D Gaussian Splatting and discuss its challenges.

A. Gaussian Splatting

3D Gaussian Splatting [3] is a method for reconstructing
a 3D scene by employing a set of anisotropic and explicit
primitive kernels, known as 3D Gaussians. The foundational
concept behind 3D Gaussian Splatting is the representation
of spatial information through the 3D Gaussians, where the
covariance matrix defines the density function of a point p in
space. This function utilizes the Gaussian rotation matrix R
and the scale matrix S, and is mathematically described as:

d(p) =
∑
g

αg exp

(
−1

2
(p− µg)

TΣ−1
g (p− µg)

)
(1)

where µ is the center of the Gaussian, Σ represents the
covariance matrix and α is the alpha-blending weight (i.e., the
opacity value). Specifically, to maintain the physical meaning
of the covariance matrix, the original 3D GS’s authors suggest
setting the covariance matrix as follows:

Σ = RSSTRT (2)

which ensures that the covariance matrix is always positive
semi-definite.

By definition, 3D Gaussian Splatting is akin to dense point
cloud reconstruction but distinguishes itself by reconstructing
space as explicit radiance fields for novel view synthesis. This
explicit representation offers several advantages:

1) Speed: Unlike Neural Radiance Fields (NeRF), which
require querying a multi-layer perceptron (MLP) to retrieve
information, 3D Gaussian Splatting explicitly stores the data
of 3D Gaussians. This enables real-time scene rendering at
rates exceeding 100 frames per second (fps), eliminating the
need to query an MLP.

2) Portability: Since 3D Gaussian Splatting relies solely
on rasterization, it is much easier to integrate into game
engines and web viewers compared to NeRF. For instance,
3D Gaussian Splatting offers an alternative to SuperSplat in
such applications.

3) Editability: The method allows for more direct scene
editing, such as selecting, erasing, or merging specific compo-
nents within a trained scene. This is a significant improvement
over NeRF, which poses greater complexity in scene manipu-
lation due to its dependence on MLPs.

B. Surface Reconstruction Problem in Gaussian Splatting

Despite its advantages, 3D Gaussian Splatting (3D GS)
presents significant challenges in accurate surface reconstruc-
tion. The limitations outlined here motivate the shift towards
2D Gaussian Splatting, which overcomes these issues by
improving geometric accuracy.

First, 3D GS has difficulty in learning thin surfaces. 3D GS
utilizes a volumetric radiance representation that learns the
three-dimensional scale. However, this method struggles with
accurately representing thin surfaces, which are often essential
in detailed reconstructions.

Second, it absence of surface normals. High-quality surface
reconstruction typically relies on surface normals to define
the orientation of surfaces in space. In contrast, 3D GS lacks
surface normals, which hampers precise surface rendering.
While Implicit Neural Networks (INN) address this issue
through the use of Signed Distance Functions (SDF), 3D GS
does not incorporate this functionality, leading to suboptimal
surface fidelity.

Third, it lacks of Multi-View consistency. The rasterization
process in 3D GS can introduce artifacts due to inconsistencies
between different viewpoints. Specifically, as different 2D
intersection surfaces are generated from various perspectives,
visual discrepancies and artifacts are likely to occur.

Finally, it suffers from inaccurate affine projection prob-
lems. The affine matrix used in 3D GS to convert it into radi-
ance fields suffers from perspective inaccuracies, especially as
it deviates from the Gaussian center. This can result in noisy
reconstructions and further degrade surface quality.

Moreover, 3D GS shares some of the challenges faced by
Neural Radiance Fields (NeRF), particularly the difficulty in
generating high-quality meshes. Methods such as Marching
Cubes or Poisson Surface Reconstruction often struggle with
3D GS’s volumetric opacity accumulation, leading to issues
in extracting detailed and accurate surface geometry.

III. METHOD

We propose the novel DreamSurfel pipeline to remedy the
limitations of 3D Gaussian Splatting’s inaccurate normal and
depth estimations. To this end, DreamSurfel integrates 2D
Gaussian Splatting with 3D generation via SDS loss, while
maintaining efficient generation of DreamGaussian [2].

A. Gaussian Surfel

2D Gaussian Splatting [4] (i.e., Gaussian Surfels) represents
a 3D scene using 2D Gaussian Splat as primitives of the scene.
Each 2D Gaussian splat is defined by its central point pk, two
principal tangential vectors tu and tv , and a scaling vector
S = (su, sv). The normal vector of the splat, tw = tu ×
tv , completes the orthogonal basis. The orientation can be
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represented by a 3 × 3 rotation matrix R = [tu, tv, tw], and
the scaling factors by a 3×3 diagonal matrix S with the third
diagonal entry as zero. A 2D Gaussian is thus defined in a
local tangent plane in 3D space, parameterized as:

P(u, v) = pk + sutuu+ svtvv = H



u
v
1
1


 (3)

where H ∈ R4×4 is defined as a local tangent plane-to-
world homogeneous transformation. Subsequently, the Gaus-
sian value at point u = (u, v) in uv space is evaluated as:

G(u) = exp


−u2 + v2

2


. (4)

This approach distributes densities within a planar disk, with
the normal vector indicating the steepest density change.

The parameters pk, (su, sv), and (tu, tv) are optimized
during training. Each 2D Gaussian also has an opacity value α
and a color feature c parameterized with spherical harmonics.
All the above optimizable parameters are presented by Θ,
where Θi = {pi,Si,Ri, αi, ci} is the parameter for the i-
th Gaussian Surfel.

B. Splatting

Following Huang et al. [4], we also utilize 2D-to-2D
projection in our rasterization algorithm. For a given image
coordinate (x, y), a ray is defined as the intersection between
two homogeneous planes. These planes are represented as:

hx = (−1, 0, 0, x), hy = (−1, 0, 0, y) (5)

The ray intersection is computed by transforming the homo-
geneous planes hx and hy into uv-space. This transformation
is achieved using a matrix multiplication with a transformation
matrix WH , resulting in:

hu = (WH)Thx, hv = (WH)Thy (6)

By employing homography, the transformed planes hu and
hv in uv-space are used to compute the intersection point with
the 2D Gaussian splats. The intersection is determined through
the following system of equations:

hu · (u, v, 1, 1)T = 0, hv · (u, v, 1, 1)T = 0 (7)

The closed-form solution for the u-coordinates and v-
coordinates in uv-space is given by:

u(x) =
h2uh4v − h4uh2v

h1uh2v − h2uh1v
,

v(x) =
h4uh1v − h1uh4v

h1uh2v − h2uh1v

(8)

This solution provides the projection of the screen pixel
from uv-space, where the depth z is determined using a pre-
viously defined equation. This equation accurately computes
the projection of 2D Gaussian splats onto the image space,
which is crucial for rendering geometrically precise surfaces.

C. DreamSurfel

To generate DreamSurfels, we build upon the foundational
optimization framework introduced in DreamGaussian, incor-
porating several key modifications to improve the accuracy
and efficiency of 3D content generation. While the core
optimization pipeline remains similar, a major difference lies
in the way we regularize the Gaussian Surfels to better capture
geometric details.

1) Initialization and Optimization: At the outset, we initial-
ize the Gaussian Surfels as a set of randomly distributed points
within a spherical volume. Each Surfel is assigned a random
position inside this sphere, with its initial scaling set to unity
and no rotational transformation applied. During the optimiza-
tion process, these Surfels are periodically densified—meaning
that more Surfels are added to increase the resolution of the
3D model as necessary. This densification strategy is crucial
for maintaining the detail and accuracy of the scene geometry
as the optimization progresses.

2) Score Distillation Sampling for 3D Content Generation:
As in previous works, we employ Score Distillation Sampling
(SDS) to guide the optimization of Surfels. SDS serves as the
primary tool for translating 2D image priors into meaningful
3D geometries. For the task of generating 3D content from
an input image, we assume the availability of a reference
image, denoted as Ĩr, along with a corresponding foreground
mask, ĨAr , to help distinguish the object of interest from the
background.

To leverage the rich information encapsulated in 2D dif-
fusion models, we utilize Zero-1-to-3 XL [5] as our 2D
diffusion prior. This diffusion model helps generate plausible
3D structures by predicting noise within the image space,
which is then back-propagated to refine the 3D Surfels.

The SDS loss function, central to this optimization, is
formulated as follows:

∇ΘL = Et,p,ϵ


w(t)


ϵϕ(Ip; t, Ĩr,∆p)− ϵ

 ∂Ip
∂Θ


(9)

In this equation, w(t) is a weighting function that modulates
the importance of different time steps during the optimization.
ϵϕ(·) denotes the predicted noise by the 2D diffusion prior,
which helps estimate the difference between the current image
prediction and the reference image, guiding the Surfels’ refine-
ment. ∆p refers to the relative change in camera pose from
the reference camera, a crucial factor in ensuring the Surfels’
3D alignment with the input image’s perspective. Θ represents
the parameters of the Surfels that are being optimized.

3) Normal-Consistency Regularization: In addition to the
SDS-based optimization, we incorporate a normal-consistency
regularization term. This regularization is inspired by tech-
niques used in 2D Gaussian Splatting and aims to produce
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Surfels with smoother surface normals and more accurate
depth information. By enforcing normal consistency, we re-
duce artifacts such as noisy surface normals, which can lead
to jagged or unrealistic 3D reconstructions.

The normal-consistency loss is given by:

Ln =
∑
i

ωi(1− n⊤
i N) (10)

Here, ωi is a weighting factor that adjusts the importance of
each Surfel based on its contribution to the overall scene. ni

represents the surface normal of the i-th Surfel. N is the
ground-truth or predicted normal from the global 3D scene
structure. This term encourages each Surfel to align its surface
normal with the overall scene geometry, leading to cleaner and
more realistic 3D shapes.

4) Final Optimization Rule: The total loss function for our
method is a combination of the SDS loss and the normal
consistency regularization loss. The final objective is:

L = LSDS + λLn (11)

where λ is a hyperparameter that balances the influence of the
normal-consistency loss relative to the SDS loss.

By combining these loss components, our method optimizes
the positions, scales, and orientations of the Gaussian Surfels,
ensuring that they not only conform to the image priors pro-
vided by the diffusion model but also produce geometrically
accurate and visually coherent 3D structures. This approach
allows DreamSurfels to achieve both high geometric precision
and computational efficiency, making it a powerful tool for
rapid and high-quality 3D content generation from single
images.

IV. EXPERIMENT

Our codebase is built upon the DreamGaussian [2] frame-
work, with most of the experimental settings and hyper-
parameters aligned with the original implementation. Apart
from the changes in the primitive kernel definition and the
rasterization module to support Gaussian Surfels, all other
aspects, including hyperparameters, remain consistent across
both methods.

A. Qualitative Result

We provide qualitative comparisons of image-to-3D genera-
tion results in Figure 1. The left side of the figure shows RGB
renderings, while the right side displays normal renderings
derived from the median depth values.

As shown in Figure 1, our proposed DreamSurfels method
demonstrates notable improvements in both appearance fidelity
and geometric reconstruction quality compared to DreamGaus-
sian. The enhanced surface details and more accurate normal
estimations result in cleaner geometry and a higher-quality
3D asset representation. Hence, It is important to note that
the results shown are before the refinement stage suggested
in DreamGaussian. We are comparing the generated Gaussian
scene directly, without any further post-processing or mesh

Fig. 1. Visual comparison between DreamSurfel and DreamGaussian. The left
side shows RGB renderings, while the right side displays normal renderings.
All results are from Stage 1, i.e., before the refinement stage.

refinement, ensuring a fair comparison between the initial
outputs of both methods.

Additionally, our method maintains the rapid generation
speed of DreamGaussian, achieving 3D content creation in
just one minute, but with significantly improved geometric
accuracy. The method can also be extended to fast and
accurate TSDF mesh extraction, enabling more efficient mesh
refinement in 3D content generation workflows.

B. Quantitative Result

Additionally, we present quantitative performance metrics in
Table I. The 1-stage result of our approach achieves a CLIP
similarity score of 0.734 and generates content in 1 minute,
outperforming several state-of-the-art methods in terms of both
efficiency and quality.

The results indicate that our method offers a competitive
balance between accuracy and efficiency, providing high-
quality textured meshes from single-view images within a
minute.

V. CONCLUSION AND LIMITATIONS

In this paper, we present DreamSurfels, a novel frame-
work for 3D content generation that enhances both geometric
accuracy and efficiency compared to existing methods like
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Method Type CLIP-Similarity ↑ Time ↓

One-2-3-45 Inference 0.594 45 seconds
Point-E Inference 0.587 78 seconds
Shap-E Inference 0.591 27 seconds
Zero-1-to-3 Optimization 0.647 20 minutes
Zero-1-to-3* Optimization 0.778 30 minutes

DreamGaussian Optimization 0.678 1 minute
Ours Optimization 0.734 1 minute

TABLE I
TABLE 1: QUANTITATIVE COMPARISON OF 3D CONTENT GENERATION

METHODS. ZERO-1-TO-3* DENOTES THE ORIGINAL ZERO-1-TO-3 WITH A
MESH FINE-TUNING STAGE. WE REPORT ONLY THE STAGE 1 RESULT OF
OUR RESULT AGAINST TO THE STAGE 1 RESULT OF DREAMGAUSSIAN.

DreamGaussian. By incorporating Gaussian Surfels, our ap-
proach enables faster and more precise normal and depth re-
constructions, achieving high-quality textured mesh generation
in just one minute from single-view inputs. Our experiments
show significant improvements in both appearance fidelity and
geometric detail, making DreamSurfels a robust solution for
3D content creation.

Despite these advancements, our method still shares some
limitations with other optimization-based 3D content genera-
tion methods that rely on single-view inputs and do not utilize
multi-view diffusion techniques. Specifically, these methods
commonly encounter issues such as:

• Multi-Face Janus Problem: Our approach, similar to other
single-view optimization-based methods, struggles with
accurately handling scenes with multiple faces or com-
plex geometry, often leading to incomplete or inconsistent
reconstructions.

• Oversaturated Textures: Due to the reliance on single-
view images, there can be oversaturation in texture de-
tails, which affects the overall appearance and fidelity of
the generated 3D content.

• Baked Lighting: The generated scenes may exhibit baked
lighting artifacts, where the lighting is not accurately
represented across different viewpoints, resulting in un-
realistic lighting effects and shadows.

These limitations are intrinsic to methods that do not leverage
multi-view diffusion or other advanced techniques for com-
prehensive scene understanding and accurate texture represen-
tation.

Future work may address this issue by integrating multi-
view diffusion models or leveraging advanced generative tech-
niques for depth and normal estimation to further enhance the
clarity and sharpness of the generated assets.
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