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Abstract—In this paper, we study the capability of visual
context-based mathematical reasoning within the rapidly evolving
field of Large Multimodal Models (LMMs). Achieving visual
context-based mathematical reasoning requires cognitive skills
similar to those used in human reasoning, as it involves inter-
preting diverse visual elements and converting them into mathe-
matical representations. Previous research has explored various
methodologies to address this challenge, but these approaches
tend to work only under specific conditions and are often
constrained by the limitations of available datasets. As a result,
this paper offers a comprehensive analysis of datasets related to
visual context-based mathematical reasoning and evaluates the
effectiveness of LMMs using these datasets. We aim to identify
the limitations of existing techniques and suggest future research
directions.

Index Terms—Visual context-based mathematical reasoning,
mathematical reasoning, mathematical reasoning, Large Multi-
modal Models

I. INTRODUCTION

In recent years, the significant advancement of Large Multi-
modal Models (LMMs) [1]-[3] has spurred numerous innova-
tions across various application domains. Among them, visual
context-based mathematical reasoning is notably critical, as
it addresses the challenge of comprehending and processing
intricate visual information prevalent in our daily experiences.
For example, in education, presenting math problems visually
can help students understand them more intuitively. It can also
help them progress in science and other areas of everyday life.
[4]

The ability to perform visual context-based mathematical
reasoning requires skills beyond simple computations. It ne-
cessitates the interpretation of diverse visual elements, such as
shape, position, color, and size of objects, and their conversion
into mathematical representations. This complex process is
similar to human cognitive abilities, and reasoning at a similar
level remains a challenge for LMMs. Therefore, continued
research is essential to fulfill this need. [5]

Prior studies have explored various approaches to visual
context-based mathematical reasoning. [6], [7] However, many
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such studies demonstrate performance efficacy only under
specific conditions or are hindered by dataset limitations. For
example, models optimized for a specific type of problem
may not be able to cope with other types of problems, which
hinders the generalization ability of the model. In addition,
the variety and quality of the datasets used to train the models
can also be a limitation, which can hinder their practical
application.

Therefore, this paper aims to build on the achievements
of previous studies, comprehensively investigate and analyze
datasets that perform mathematical reasoning within visual
contexts, and analyze the performance of LMMs based on
them. By doing so, we hope to contribute to the advancement
of this field by clarifying the limitations of current techniques
and suggesting future research directions.

Key research questions include:

1. What are the characteristics, advantages, and limitations
of various mathematical reasoning datasets within visual con-
texts?

2. How do LMMs perform across these datasets?

3. What are the limitations and challenges faced by the datasets
and models, and how can they be overcome?

The structure of this paper is as follows. First, we survey
and categorize various datasets related to visual context-based
mathematical reasoning. Then, the performance of LMMs on
these datasets is evaluated and analyzed based on the existing
literature. Finally, we discuss the limitations of the models and
future research directions with suggestions to overcome them.

II. MULTIMODAL MATH REASONING DATASET

To study visual context-based mathematical reasoning, it is
essential to have high-quality datasets that contain a variety of
cases. These datasets provide the basic material for training
and evaluating models, and also form the basis for predicting
performance in real-world applications. Without appropriate
datasets, the reliability of a model’s performance cannot be
assured, and the direction of research may falter.

ICTC 2024



TABLE I
FORMAT OF MATHEMATICAL DATASETS FOR VISUAL REASONING

Dataset Question | Image Choices Unit Answer Question Type Answer Type Query PID Grade
MathVista v v v v v v v v v v
MathVerse v v v v v v v

MathV360K v v v v v v
MathVision v v v v v
We-Math v v v v v
TABLE 11
OVERVIEW OF MATHEMATICAL DATASETS FOR VISUAL REASONING

Dataset Data Count Level Note Format Submitted
MathVista 6.1K E, H, C Question Lanauge : English, Chinese, Perisian parquet 2023.10
MathVerse 47K H Six distinct versions : TextDominant, TextLite, Vision Intensive, parquet 2024.03

Vision Dominant Vision Only, Text Only
MathV360K 339K - Incorporates 24 existing datasets json 2024.06
MathVision 3.3K E, M, H Problems are put into difficulty levels 1-5 parquet 2024.02
We-Math 1.7K E, M, H Decomposed problem into 2 step or 3 step by concept json 2024.07

(E: Elementary M: Middle School H: High school C:College)
The Data Count in the table is based on the dataset available online on HuggingFace.

Such datasets should be designed to include a range of
visual scenarios and complex mathematical problems. This
helps to broaden the applicability of models and improve their
ability to solve realistic problems. Among the many datasets
available, we will focus specifically on mathematical datasets.
The selected data consists of five different datasets.

A. MathVista

The MathVista [8] consists of 6,141 samples collected from
31 different datasets. It significantly enhances the diversity and
complexity of visual recognition and mathematical reasoning
tasks by integrating the MathQA [9] dataset with 19 VQA
[10] datasets. MathVista dataset integrates a total of 28 existing
multimodal datasets. The dataset is divided into 5,140 samples
for training and 1,000 samples for testing.

TABLE III
MATHVISTA QA EXAMPLE
Question Answer Image
Use a sector paper sheet | 4mcm

with a central angle of
120.0 and a radius of
6.0 to roll into a con-
ical bottomless paper
cap (as shown in the
picture), then the bot-
tom perimeter of the
paper cap is ()

o=

Source: Adapted from [8]

The dataset identifies seven types of mathematical rea-
soning: algebraic reasoning, arithmetic reasoning, geometry
reasoning, logical reasoning, numerical reasoning, scientific
reasoning and statistical reasoning. It focuses on five primary
tasks of figure question answering (FQA), geometry problem
solving (GPS), mathematical word problem solving (MWP),
textbook question answering (TQA) and visual question an-
swering (VQA). In the testmini dataset, which contains 1,000
data points, there are two types of questions: free-response

and multiple-choice, which make up 46% and 54% of the
dataset respectively. In the larger test dataset, which contains
5,140 data points, free-form questions account for 44.5%,
while multiple-choice questions account for 55.5%. The image
and question-answer data in Table. III belong to the VQA
type of data within the MathVista dataset. MathVista includes
items, answers, and images, as well as metadata that includes
question type, answer type, task category, grade level, visual
context, and the reasoning skills required. This comprehen-
sive information about the data facilitates detailed evaluation,
demonstrating the depth and usefulness of the dataset in
educational contexts.

B. MathVerse

The MathVerse [11] is a collection of 2,612 math problems
with diagrams were collected. To avoid limiting performance,
they collected problems mainly high school level problems,
requiring moderate mathematical knowledge, and excluded
college level topics such as calculus and graph theory.

They classified the content of the text in the problem
into three categories: Descriptive Information, Implicit Prop-
erty, and Essential Condition. This classified text was then
progressively condensed, with information being increasingly
integrated into images, resulting in six detailed versions.

Each problem is divided by humans into six versions :
Text Dominant, Text Lite, Text Only, Vision Intensive, Vision
Dominant, and Vision Only, resulting in a total of 15,000 data.
By using these six different versions of the approach, it is
possible to comprehensively assess how well visual diagrams
can be understood for mathematical reasoning and to what
extent they can be effectively utilized.

This paper will focus on the Vision Intensive version,
one of the six types of MathVerse. As of now, there are
4.7K publicly available datasets on Hugging Face, with free-
form and multiple-choice questions accounting for 44.7% and
55.3%, respectively.
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TABLE IV
MATHVERSE VISION DOMINANT QA EXAMPLE

Question Answer
As shown in the figure, | B
If OA and OB are over- B
lapped to form a cone
side, the diameter of the
bottom of the cone is
() Choices: A:2cm B:4cm
C:3cm D:5cm

Image

oA

A

Source: Adapted from [11]

MathVerse consists of items, answers, images, as well as
information such as question type, answer type, query-cot,
and problem-version. The questions and answers in Table. IV
belong to the GeoQA [12] dataset. The sentence “There is
a sector with a central angle of 120.0 and a radius of 6.0”
in Table. IV does not exist in the Vision Dominant version.
Instead, this information is displayed in the image of Table. IV

C. MathV360K

The MathV360K [7] was created by collecting 40,000 high-
quality images and question-answer pairs from 24 open-source
multimodal question-answer datasets and synthesizing 320,000
new pairs. This dataset is used as an instructional dataset for
LMMs.

Based on the image dataset, they classified images into
two categories: Image Clarity and Image Comprehension
Complexity. In Image Clarity, label O signifies low-quality
images, while label 1 denotes high-quality images. For Image
Comprehension Complexity, lower scores (closer to 0) imply
images that are easier to understand, while higher scores
(nearing 3) represent images with more challenging contextual
comprehension. The tasks are categorized into FQA, MWP,
GPS, TQA, and VQA, with visual contexts including bar
charts, tables, geometry diagrams, scientific figures, natural
images, and more.

TABLE V
MATHV360K QA EXAMPLE

Question
What is the value of the
largest individual bar in
the whole chart?
What is the difference in
value between the ’can-
not’ and 'rock’ categories
for *degree’?
What is the total value of | The answer is
the ’player’ category for | 10
both ’cannot’ and ’rock’?

Answer Image
The answer is 9 Title

Values

The answer is 6

o N & o

player  degree summer

W cannot B rock
Source: Adapted from [7]

Despite the potential for additional questions, the visual
information of the images was not fully utilized. To address
this, GPT-4V [13] with Few-Shot Learning was employed to

generate additional questions for each image and augmented
the original question by mining the image.

However, MathV360K does not provide information on
the difficulty level or type of the problems, apart from the
questions, answers, and choices.

The question and answer data in Table. V is from the DVQA
[14] dataset within the collected MathV360K data.

TABLE VI
MATHVISION QA EXAMPLE
Question Answer Image
The point O is the center | 10
of the circle in the picture.
What is the diameter of
the circle?
10
[T
5
H 4
Source: Adapted from [15]

D. MathVision

The MathVision [15] contains 3,040 data points collected
from 16 different area of mathematics and it is categorized
into five levels of difficulty. This dataset contains high qual-
ity mathematical problems within visual contexts, carefully
curated from actual mathematical competitions. Table. VI
illustrates cases from MathVision. The subject pertains to
metric geometry - length, and the problem is in a free-form
format. The test dataset, comprising 3,040 data points, includes
both free-form and multiple-choice questions, with each type
representing 49.6% and 50.4% of the dataset, respectively.
In contrast, the testmini dataset,containing 304 data points,
features free-form questions at 37.5% and multiple-choice
questions at 62.5%. Information regarding the types and levels
of each problem is a unique feature of MathVision.

MathVista comprises many similar problems from different
source datasets, resulting in limited problem diversity. After
eliminating duplicate problems with identical stem text, only
4,740 unique problems remain. Additionally, this collection
includes many template problems with only a few words
altered. There are three main types of problems featuring ab-
stract scenes in MathVista, which account for over 90% of the
total problems. For instance, a typical question in MathVista
related to function graphs poses simple and concise questions
about the depicted function graph. In contrast, MathVision
includes more complex function concepts, such as symmetry
and periodic functions, and has longer questions.

The MathVision dataset also comprises questions on topol-
ogy and graph theory, two categories absent in MathVista,
requiring complex visual recognition and mathematical rea-
soning.

E. We-Math

The We-Math [16] contains a total of 6.5K items and covers
five domains, including 67 hierarchical knowledge concepts
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TABLE VII
PERFORMANCE METRICS BY MODEL AND DATASET

Dataset

Model Type Model MathVista MathVision MathVerse We-Math
- Human 60.3 68.82 64.9 -
GPT-40 63.8 (+3.5) 30.39 (-38.43) - 42.86
GPT-4V 49.9 (-10.4) 22.76 (-46.06) 33.6 (-31.3) 31.05
close-LMMs Gemini 1.5 Pro 52.1 (-8.2) 19.24 (-49.58) - 26.38
Qwen-VL-Max - 15.59 (-53.23) 23.3 (-41.6) 10.48
Qwen-VL-Plus 43.3 (-17) 10.72 (-58.1) 13.0 (-51.9) -
Math-LLaVA-13B 46.6 (-13.7) 15.69 (-53.13) - -
open-LMMs SPHINX-MoE 42.3 (-18) - 12.5 (-52.4) -
SPHINX-Plus 36.8 (-23.5) - 13.5 (-51.4) -

The numbers in parentheses within the table represent the performance difference between each LMMs and human. A red '+’ symbol indicates that a model
outperforms humans, while a blue -’ symbol indicates underperformance.

and areas such as Measurement, Position and Direction, and
Transformation and Motion of Figures. Depending on the
knowledge concepts required to solve the problems, complex
problems are decomposed into sub-problems, resulting in
changes to the questions and images in the sub-problems
from the original problems. There are currently 1.7K publicly
available datasets on Hugging Face. The We-Math introduces
a new 4-dimensional metric called Insufficient Knowledge
(IK), Inappropriate Generalization (IG), Complete Mastery
(CM), and Rote Memorization (RM) to hierarchically evaluate
problems inherent in the reasoning process.

TABLE VIII
WE-MATH 2STEPS QUESTION AND ANSWER
Step Question Answer Image
1 What is the area of the | A
circle in the diagram be-
low (in square centime-
ters)? (m = 3.14) v
Source: Adapted from [16]
2 In the diagram below, C
the area of the rectangle
is 314 square centime-
ters. The width of the
rectangle is ( ) cm.
(m = 3.14) o
Source: Adapted from [16]
Multi | The areas of the two | C
shapes below are equal. ‘
The width of the rectan-
gle is ( ) em. (m = v
3.14) 20m
Source: Adapted from [16]

The We-Math is composed of multiple-choice questions,
where participants choose an answer from options A, B, C, and
D and includes knowledge concept descriptions for solving
problems. The following Table. VIII illustrates the transfor-
mation of a multi-step question into a two-step format. Based
on the knowledge concepts required to solve the problem, it
guides the student to first calculate the area of the circle and
then determine the width of the rectangle based on the given
area condition.

We have organised an overview of the mathematics datasets

previously examined in the Table. I and Table. II. The infor-
mation presented in the table is derived from datasets available
on Hugging Face. It provides details such as the size of each
dataset, difficulty level, features, format, and submission date
of the paper. MathV360K integrates 24 datasets, resulting in
a variety of difficulty levels. Consequently, specific difficulty
markings are not provided.

III. PERFORMANCE ANALYSIS

In this chapter, we compare the performance of different
LMMs on each dataset and analyze the performance differ-
ences based on dataset characteristics. The main models used
in this study consist of closed-source LMMs GPT-40 [1],
GPT-4V [13], Gemini 1.5 Pro [17], [18], Qwen-VL-Plus [19],
Qwen-VL-Max [19], and open-source LMMs Math-LLaVA
[7], SPHINX-MOoE [20] and SPHINX-Plus [20].

For the comparative analysis of each model’s performance,
we used four main datasets: MathVerse, MathVista, Math-
Vision, and We-Math. This datasets have in common that
they are English-based and designed to solve mathematical
problems presented in a visual context. Table. VII reports the
performance of the LLMs on each dataset. We will explain
the features of each dataset and the performance of the
corresponding LMMs based on Table. VII. (MathV360K is
omitted because it is designed for instruction fine-tuning).

MathVista The MathVista dataset consists of a variety of
math problems, geometric diagrams, and text-rich images. The
main model, GPT-4o0, achieved a performance level of 63.8%,
slightly outperforming human performance of 60.3%. The
performance of the other close-LMMs is 52.1% for Gemini
1.5 Pro, 49.9% for GPT-4V, 43.3% for Qwen-VL-Plus. The
performance of the open-LMMs is 46.6% for Math-LLaVA-
13B, 42.3% for SPHINX-MoE, and 36.8% for SPHINX-Plus.
MathVista has a relatively straightforward structure for the
models to solve, featuring many simple and repetitive ques-
tion patterns. GPT-4V performed well on geometry problem-
solving and algebraic reasoning but did not adequately explain
math in a visual context. This limitation can be attributed
to inaccuracies in image caption generation and a lack of
geometric and mathematical reasoning capabilities.

MathVision The highest performance on the MathVision
dataset was achieved by GPT-40 with 30.39%, followed by
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GPT-4V with 22.76%, Gemini 1.5 Pro with 19.24%, Math-
LLaVA-13B with 15.69%, Qwen-VL-Max with 15.59% and
Qwen-VL-Plus with 10.72%. The dataset consisted of simple
problems at the elementary level, but the image-centered
reasoning problems posed challenges to the models. Based on
GPT-4V, the error types are categorized as follows: reasoning
errors(42.2%), visual recognition errors(31.9%), knowledge
errors(15.1%), question misunderstood error(6.9%), reject to
answer(2.6%), and calculation errors(1.3%). [15] Reasoning
errors account for nearly half of all errors, suggesting the
limitations of the model’s logical processing capabilities. Vi-
sual recognition errors indicate that the model is struggling to
interpret visual data accurately.

MathVerse In the MathVerse dataset, GPT-4V performed
the best with 33.6% performance. Qwen-VL-Max and
SPHINX-Plus achieved lower performances at 23.3% and
13.5%, respectively, while SPHINX-MoE and Qwen-VL-Plus
attained performances of 12.5% and 13.0%, respectively.
This dataset focuses on interpreting mathematical diagrams.
The baseline error types for GPT-4V are visual percep-
tion errors(42.4%), reasoning errors(36.4%), knowledge er-
rors(12.1%), and calculation errors(9.1%) [11]. Visual per-
ception errors are particularly prominent in advanced diagram
interpretation, highlighting the need for improved performance
of visual encoders. On the other hand, knowledge errors and
calculation errors are relatively low, suggesting that GPT-4V’s
understanding of the mathematical concepts used in MathVerse
is relatively good.

We-Math We-Math is a dataset that decomposes complex
problems into 67 knowledge concepts based on textbook
knowledge. The performance of the models is as follows:
42.86% for GPT-40, 31.05% for GPT-4V, 26.38% for Gem-
ini 1.5 Pro, and 10.48% for Qwen-VL-Max. We-Math uses
matrices such as IK, IG, CM, and RM to evaluate the
reasoning process of LMMs. GPT-40 showed an advantage
in handling multiple knowledge concepts, while other LMMs
showed limitations in solving multiple knowledge concepts
in complex problems. GPT-4o0 frequently made knowledge
errors in more than 45 out of 67 knowledge concepts, and
visual errors in about 30 knowledge concepts, particularly in
the understanding of certain concepts, such as angles. This
indicates that GPT-40 needs to be strengthened with fine-
grained measurement capabilities.

In this chapter, we deeply analyzed datasets for performing
mathematical reasoning in a visual context and evaluated the
performance of LMMs on each dataset. We found that model
performance varies depending on the characteristics of each
dataset. In the next chapter, we will discuss potential causes
of these performance discrepancies and propose improvements
to both models and datasets to mitigate these differences in
future research.

IV. INSIGHTS

In this chapter, we analyze the performance differences
of LMMs on different datasets. Our goal is to identify the
reasons for two main issues that emerge from this: (1) the

performance differences for each dataset on the same LMMs,
and (2) the difference in performance of each LMMs and
human performance. We propose five main factors as the
causes of these issues.

In this chapter, we conduct a comprehensive analysis of
the performance of LMMs on various datasets. Our goal is
to identify two main issues: (1) the performance differences
for each dataset on the same LMMs, and (2) the difference
in performance of each LMMs and human performance. We
propose five main factors as the causes of these issues.

The complexity of the dataset exerts both direct and in-
direct influences on performance. MathVista’s experimental
results show that LMMs are more adept at coping with college-
level problems compared to elementary-level problems. This is
related to the learning styles of elementary school students and
the limitations of age-specific educational materials. Elemen-
tary education materials are mainly abstract and characterised
by relatively limited data. As a result, We-Math, which is
mainly composed of elementary school-level data, performs
relatively poorly, while MathVerse, which targets high school-
level problems, outperforms We-Math. These results suggest
that the lower the level of the dataset, the more likely the
model will perform poorly.

The potential for contamination of the dataset is also
an important consideration. When evaluating the datasets
contained in the training data, LMMs perform well. In the
case of Open-LMMs, the training data is explicitly stated,
so the potential for data contamination can be assessed, but
in the case of Close-LMMs, the training data is often not
explicitly disclosed, and the potential for data contamination
exists. Examination of models with advanced visual context-
based mathematical reasoning, such as GPT-4V and GPT-4o,
reveals that GPT-4V was released in September 2023 and GPT-
40 in May 2024, with training data sourced up until April 2023
and October 2023, respectively. This suggests the possibility
that MathVista, released before these models, might have been
included in the LMMs’ training data, thereby posing a risk of
data contamination. Conversely, datasets such as MathVision,
MathVerse, and We-Math, released after the models, imply a
lower risk of contamination. Notably, MathVista outperforms
other datasets by approximately 26% on average. These results
show that there is potential for dataset contamination in the
LMMs.

The type of dataset can also influence LLMs perfor-
mance. In the performance analysis of MathVerse, higher
accuracy was observed in text-intensive datasets compared
to vision-intensive datasets. This indicates that the LMMs
performs better on text-intensive datasets than on image-
intensive datasets. Datasets containing various types of ques-
tions, such as MathVista, which includes Math Word Problems
and Vision Question Answer, tend to show better performance
than those focused solely on Vision Question Answer (We-
Math, MathVerse, MathVision). These results suggest that
Vision Question Answer types of problems tend to perform
worse than other types, which is also related to the model’s
poor image recognition performance.
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The ability of LMMs to recognise visual data is currently
limited. Performance analysis of GPT-4V on MathVision and
MathVerse shows that visual errors constitute over 30% of
total errors. The LMMs frequently fail to accurately process
visual information. This results in diagram interpretation er-
rors, which are particularly noticeable in problems that require
advanced diagram analysis. The observation that text-centric
datasets demonstrate higher accuracy than image-centric ones
in MathVerse further corroborates the LMMs’ limited capabil-
ity in processing visual data. This deficiency partially accounts
for the lower performance of LMMs compared to human
counterparts.

Deficiencies in the reasoning abilities required to solve
complex mathematical problems detrimentally impact
overall performance. For GPT-4V, visual errors comprise
more than 35% of total errors in MathVision and MathVerse
datasets. This indicates that LMMs’ reasoning capabilities
remain underdeveloped, contributing significantly to the sub-
stantial gap between human and model performance.

In this chapter, we have identified the main factors respon-
sible for the performance differences of LMMs on different
datasets and the performance gap between humans and LMMs.
Future research should focus on addressing these factors to
improve the overall performance of LMMs.

V. CONCLUSION

In this study, we undertake a thorough analysis of multiple
datasets and evaluate the performance of LMMs concerning
visual context-based mathematical reasoning. The results re-
veal that model performance is markedly affected by dataset
attributes and the training methodology employed. Notable
deficiencies of LMMs are linked to inaccuracies in visual
perception and cognitive reasoning, underscoring the need for
more resilient vision encoders and the augmentation of logical
reasoning faculties. To tackle these challenges, it is imperative
to enhance the diversity and quality of training datasets and
to adopt sophisticated training methodologies. Future research
should prioritize the following areas:

Enhancement of Vision Encoders: Developing more ad-
vanced vision encoders capable of accurately interpreting
visual data is essential. Such progress would enable more
precise processing of intricate visual data, including diagrams
and graphs.

Strengthening MultiModal Reasoning Capabilities: To di-
minish reasoning errors, the exploration of novel algorithms
and training methodologies designed to improve multimodal
processing and reasoning capabilities is essential.
Development of Granular Performance Metrics: Formu-
lating detailed evaluation criteria and methodologies for as-
sessing mathematical reasoning will allow for the precise
identification and remediation of model deficiencies.
Diversification and Quality Enhancement of Datasets:
Creating high-quality datasets that encompass a wide range
of visual information and complex mathematical problems
will enable models to learn and generalize across a broader
spectrum of scenarios.

This research provides critical insights to scholars in the
domain by delineating the current state and potential improve-
ments for datasets and LMMs employed in visual context-
based mathematical reasoning. With sustained research and
enhancements in dataset quality, LLMs-based mathematical
reasoning models can be widely applied in education, science,
and other fields.
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