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Abstract—The rise of mobile applications in Virtual Reality
(VR) and Augmented Reality (AR), particularly those using
Head-Mounted Displays (HMDs), underscores the need to un-
derstand egocentric perspectives. This paper addresses the room-
level localization challenge—identifying the room a user is in
from an egocentric image—by framing it as a classification
problem with a deep neural network. While deep learning
has achieved remarkable success in conventional image classi-
fication, room classification from egocentric images introduces
unique challenges due to variability and ambiguity in the
user’s perspective. Unlike typical datasets that provide clear
visual data, egocentric views often lack sufficient detail, making
uncertainty estimation crucial for achieving accurate results.
Our approach not only advances egocentric localization but
also holds potential for improving navigation and context-aware
applications in AR/VR environments. We propose a novel strategy
for uncertainty estimation and validate it with a custom dataset.
Experimental results reveal significant performance improve-
ments, achieving near-perfect accuracy by effectively managing
ambiguous samples.

Index Terms—neural network, room classification, uncertainty
estimation, indoor localization.

I. INTRODUCTION

Virtual Reality (VR) and Augmented Reality (AR) are
becoming integral to daily life, driving research into mobile
applications, particularly in indoor localization. This rising
interest has intensified the focus on understanding egocen-
tric images [1] captured from the user’s perspective through
Head-Mounted Displays (HMDs). Unlike outdoor systems
that must adapt to varying light and seasonal conditions,
indoor localization primarily deals with challenges such as the
lack of satellite-based positioning. To overcome these issues,
researchers are investigating alternative methods that rely on
additional signals [2], [3], [4].

In this paper, we advance indoor localization for large,
multi-room areas by focusing on room location classification,
an underexplored approach in this field. We utilize a newly
generated dataset designed specifically for this purpose and
rely exclusively on egocentric images for classification, while
avoiding additional signals. This approach provides a fresh
perspective on accurately identifying room locations within
indoor environments.
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II. PROPOSED APPROACH

Consider a classification dataset {(z;,;)}X,, which con-
sists of IV pairs, where x; represents an image with a specified
number of pixels, and y; is the corresponding one-hot encoded
label with n, classes. Training a classification neural network
f involves solving the following optimization problem, which
minimizes the cross-entropy loss by adjusting the model
parameters O:

min — > (ys, log(e(f (21 ©)))), (1)

where log operates pointwise, and o denotes the softmax
function, which transforms the neural network’s output into a
probability vector, ensuring that the sum of its elements equals
one, with each element lying between 0 and 1. Let us define
the probability vector as follows:

pi =o(f(z4;0)) 2

In transfer learning, models are typically initialized with
pretrained weights from large public datasets like ImageNet
and then fine-tuned for fewer epochs. For our model f, we
use a pretrained ResNet-18 [5].

A. Measuring Uncertainty

For a given image x;, we define a measure of uncertainty
T in a classification task using entropy, which is calculated as
follows:

1
7(zi) = *@@nlog(m)% 3

where p; is obtained from (2), and log n.. acts as a normalizing
factor, reflecting that maximum entropy occurs when all com-
ponents are equal to 1/n.. This measure differs from the cross-
entropy loss in (1), which is utilized during the training phase;
instead, (3) is computed once per sample during the inference
phase. Since the softmax function output can be viewed as
a probability distribution, the equation above calculates the
entropy of the predicted probabilities from the neural network.
With © fixed, this measure can be used as a criterion to
eliminate uncertain samples.

Given a threshold 7, an image x; is classified only if
7(x;) < n; otherwise, it is excluded from classification. The
effectiveness of this uncertainty measure 7 will be empirically
validated in the experiments discussed later.
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Fig. 1. Distribution of uncertainty 7 for each room on the dataset.
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Fig. 2. Accuracy and ratio of non-excluded images applying threshold 7.

B. Dataset Description

In this section, we describe a dataset created for room lo-
calization, featuring egocentric images from three conference
rooms: Room 1, Room 2, and Room 3. While the rooms have
similar layouts, Room 1 is distinguished by its square desk
arrangement, whereas Rooms 2 and 3 have centrally connected
desks and differ in size. This variation provides a basis for
testing room classification effectiveness.

To account for transient objects and variations in illumi-
nation, images were captured over several days at random
times, covering both day and night. The dataset was designed
to be diverse, with almost equal proportions of easy and
challenging samples. This balance was achieved by including
images from both distant viewpoints that capture most of the
room and closer viewpoints that provide fewer visual cues. The
distribution of images across the rooms is detailed in Table I.

III. NUMERICAL RESULTS

Fig. 1 shows the distribution of the estimated uncertainty, 7,
as calculated by (3) for each room. It is important to note that
the plot is presented on a semilogarithmic scale, with the y-
axis in a logarithmic format. The results indicate that, across
all rooms, the majority of samples exhibit low uncertainty.
However, the uncertainty distribution for Room 2 and Room
3 is comparatively broader, with a greater number of samples
in the high uncertainty region. This suggests that a higher
proportion of images from these rooms are more challenging to
classify accurately. This observation aligns with expectations,

TABLE I
NUMBER OF IMAGES IN TRAIN AND TEST SETS FOR EACH RoOM

Room 1 | Room 2 | Room 3 | Total
Train Set 527 561 396 1484
Test Set 426 390 247 1063

as Room 1 is the most visually distinct in terms of interior
design.

In Fig. 2, our baseline model—using the original ResNet
architecture without thresholding by n—corresponds to the
rightmost case with = 1, achieving an accuracy of 95%.
However, by applying a smaller threshold, we observe a sig-
nificant improvement in accuracy, approaching nearly 100%.
Remarkably, at 7 = 0.5, the accuracy exceeds 99%. This
enhancement is particularly impressive considering that only
about 10% of the images are eliminated, allowing us to achieve
such high accuracy with the remaining 90% of the dataset. This
demonstrates the effectiveness of our method in significantly
boosting classification performance.

IV. CONCLUSION

In this paper, we present a novel approach to indoor
localization, focusing on room classification using egocentric
images. We generated a custom dataset tailored for this task,
enabling us to implement an effective method for estimating
and managing uncertainty, which is computed using the en-
tropy of predicted probabilities. By applying an uncertainty
threshold, our approach significantly enhanced classification
accuracy while discarding only a small portion of ambiguous
data. Our method successfully accounted for subtle design
variations between rooms, aligning with both intuitive expecta-
tions and the observed uncertainty distribution. These results
highlight the robustness of our approach in complex indoor
environments and its efficiency in handling uncertainty.
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