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Abstract—In this work, we introduce the Federated Quantum-
Train (QT) framework, which integrates the QT model into
federated learning to leverage quantum computing for distributed
learning systems. Quantum client nodes employ Quantum Neural
Networks (QNNs) and a mapping model to generate local target
model parameters, which are updated and aggregated at a central
node. Testing with a VGG-like convolutional neural network on
the CIFAR-10 dataset, our approach significantly reduces qubit
usage from 19 to as low as 8 qubits while reducing gener-
alization error. The QT method mitigates overfitting observed
in classical models, aligning training and testing accuracy and
improving performance in highly compressed models. Notably,
the Federated QT framework does not require a quantum
computer during inference, enhancing practicality given current
quantum hardware limitations. This work highlights the potential
of integrating quantum techniques into federated learning, paving
the way for advancements in quantum machine learning and
distributed learning systems.

Index Terms—Quantum Machine Learning, Federated Learn-
ing, Quantum-Train

I. INTRODUCTION

Quantum computing (QC) promises potential computational
advantages for certain tasks over classical computers, par-
ticularly in areas like machine learning (ML) and combi-
natorial optimization problems [1]–[8]. Meanwhile, the ad-
vances in classical ML and artificial intelligence (AI) have
demonstrated amazing capabilities in various tasks [9]–[12].
With the progress in quantum hardware, it is natural to
consider the combination of these two fascinating technolo-
gies. While existing quantum computing devices still suffer
from noises and imperfections, a hybrid quantum-classical
computing paradigm [13] which divides computational tasks
among quantum and classical computing resources according
to their properties to leverage the best part from the both
world is proposed. Variational quantum algorithms (VQAs)
[13] are the fundamental algorithms framework under this
hybrid paradigm. Leading quantum machine learning (QML)
methods largely rely on these variational algorithms. Varia-
tional quantum circuits (VQCs) are the building blocks of
existing QML models [14]. It has been shown theoretically that
VQC can outperform classical models when certain conditions
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are met [1], [15], [16]. VQC-based QML models have been
shown to be successful in various ML tasks ranging from
classification [14], [17]–[22], time-series modeling [23], [24],
audio and language processing [25]–[27], quantum algorithm
reconstruction [28], [29], and reinforcement learning [30]–
[34].

The great success of modern AI/ML techniques not only
depend on good model architecture design but also on the
volume of high-quality data and QML is no exception. The
requirements of data also raise the privacy concerns in the
QML research and application. Among various methods to
mitigate the privacy concerns, federated learning (FL) is a
method in which various participating parties share the locally
trained models but not the actual training data to avoid data
leakage.

Several FL methods have been proposed in the realm of
QML to enhance the privacy-preserving features [35]–[40].

While effective, these quantum FL (QFL) methods require
the trained models to be used on quantum devices in the
inference stage. It posts certain challenges at the moment as
there are limited real quantum resources available and it is
unclear whether the proposed methods are realistic in the real-
world scenarios.

In this paper, we propose a Quantum-Train (QT)-based [19],
[20], [24] QFL method in which the quantum neural networks
(QNN) are trained to generate the well-performing classical
neural network weights in the federated setting. Once the
training is finished, the QNN is not used during the inference
phase. Our main contributions are:

• Addressing data encoding issue in QFL: The QT ap-
proach integrated with FL simplifies data handling by us-
ing classical inputs and outputs, avoiding the complexities
and potential information loss of encoding large datasets
into quantum states. This method retains quantum com-
putational advantages without the scaling difficulties of
quantum data encoding.

• Reduction of qubit count in QT: Utilizing the batched
parameter generation approach, we reduce the qubit usage
from ⌈log2 m⌉ to ⌈log2⌈ m

nmlp
⌉⌉, compared to the original

QT proposal. Here, m is the number of parameters of the
target classical model and nmlp is the batch size in the
parameter generation approach. In the example examined
in this study, qubit usage is reduced from 19 to as low
as 8 qubits.
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• Inference without quantum hardware: The training results
of QT are designed to operate seamlessly on classical
hardware, eliminating the need for quantum comput-
ing resources, unlike conventional QML and QFL. This
feature enhances its applicability, especially given the
current limited access to quantum computers compared
to classical counterparts.

II. FEDERATED LEARNING

Federated Learning (FL) [41] has emerged in response to
growing privacy concerns associated with large-scale datasets
and cloud-based deep learning [42]. In the FL framework, the
primary components are a central node and multiple client
nodes. The central node maintains the global model and col-
lects trained parameters from the client nodes. It then performs
an aggregation process to update the global model, which is
subsequently shared with all client nodes. The client nodes
locally train the received model using their own data, which
typically constitutes a small subset of the overall dataset. The
concept of FL has been explored in the field of QML since
the publications [35], [36]. In [35], the authors examined
the simplest form of QFL utilizing hybrid quantum-classical
models. In this approach, a pre-trained CNN compresses input
images into a dimension manageable by a VQC. The locally
trained hybrid model parameters are then uploaded to a central
server, which aggregates these parameters and distributes the
updated model to all participants. This framework has been
further enhanced to process sequential data using a federated
quantum LSTM network [43]. The study [36] delves into a
more advanced scenario where QFL processes quantum states
instead of classical images. While QFL can mitigate the risk
of direct leakage of training datasets, it remains vulnerable
to attacks that can extract training data entries from the
trained models themselves. Such attacks pose a significant
threat to data privacy. To address this issue, [40] explores the
integration of differentially-private gradient optimizers with
QFL, aiming to enhance the privacy of QML models. QFL can
be further extended to scenarios where training is conducted on
encrypted data, as demonstrated in [44]. QFL can be applied
in diverse scenarios, including autonomous vehicles [39] and
quantum fuzzy learning [45].

III. VARIATIONAL QUANTUM CIRCUITS AND
QUANTUM-TRAIN

At the core of the QML scheme, VQCs play a pivotal
role by providing the parameterized ansatz that forms the
function approximator for learning tasks. A typical VQC
used as a QNN is depicted on the left side of Fig. 1. The
process begins with the initial state |0⟩⊗N , where N is the
number of qubits. This is followed by parameterized single-
qubit and two-qubit unitary operations U3 and controlled-U3

(CU3) gates, characterized by their matrix representations:

U3(µ, φ, λ) =


cos(µ/2) −eiλ sin(µ/2)

eiφ sin(µ/2) ei(φ+λ) cos(µ/2)


,(1)

CU3 = I ⊗ |0⟩⟨0|+ U3(µ, φ, λ)⊗ |1⟩⟨1|, (2)

The parameterized quantum state (QNN) can then be described
as:

|ψ(θ)⟩ =




i

CU i,i+1
3


j

U j
3




L

|0⟩⊗N , (3)

where i and j are qubit indices, and L is the number of
repetitions. The proposed vanilla QT [19] is as follows: con-
sider a target neural network model with parameters ω, where
ω = (ω1, ω2, . . . , ωm) and m is the total number of parame-
ters. Instead of updating all m parameters as in conventional
ML, QT utilizes |ψ(θ)⟩, a QNN with N = ⌈log2 m⌉ qubits,
to generate 2N distinct measurement probabilities |⟨ϕi|ψ(θ)⟩|2
for i ∈ {1, 2, . . . , 2N}, where |ϕi⟩ is the i-th basis state.
These probabilities are then input into a mapping model
Gβ , a multi-layer perceptron (MLP) type classical neural
network with parameters β. The first m basis measurement
result probabilities, along with the vector representations of
the corresponding basis states |ϕi⟩, are mapped from values
bounded between 0 and 1 to −∞ and ∞ using the following
equation:

Gβ(|ϕi⟩, |⟨ϕi|ψ(θ)⟩|2) = ωi, i = 1, 2, . . . ,m. (4)

Here, it can be observed that the parameter ω of the target
model is generated from the QNN |ψ(θ)⟩ and the mapping
model Gβ . Notably, the required number of parameters for
both θ and β scales as O(polylog(m)) [19], allowing for the
effective training of the target model with m parameters by
only tuning O(polylog(m)) parameters of θ and β. Unlike
conventional QML approaches, which require the QNN during
the inference stage, the QT approach decouples the quantum
computing resource after training. Since the QNN is used
solely for generating the parameters of the target model, the
resulting trained model is a classical neural network. This
classical model can then be executed entirely on classical
computing hardware. This characteristic is particularly prac-
tical given that quantum computing hardware is currently a
relatively rare and expensive resource.

IV. QUANTUM-TRAIN WITH BATCHED PARAMETER
GENERATION

Building upon the previously proposed QT method, which
generates a single parameter of the target network model from
a single basis measurement probability, this study introduces
a batch parameter generation approach. This method gener-
ates a batch of parameters from a single basis measurement
probability, as illustrated in Fig. 1. In this approach, the m
parameters of the target model are divided into nch chunks,
each containing nmlp parameters, such that nch = ⌈m/nmlp⌉.
The mapping model, now denoted as G̃β , takes as input |ϕi⟩
and |⟨ϕi|ψ(θ)⟩|2 and generates a batch of parameters in ω of
size nmlp:

G̃β(|ϕi⟩, |⟨ϕi|ψ(θ)⟩|2) = ω⃗i, i = 1, 2, . . . , nch, (5)
ω⃗i = (ωi,1, ωi,2, ...ωi,j), j = 1, 2, . . . , nmlp. (6)

This setup is realized through a decoder-like architecture of
the MLP in the mapping model G̃β , where the output size
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Fig. 1: Illustration of the QT method with batched parameter generation. The target model parameters ω are divided into
chunks, each containing nmlp parameters. The QNN generates measurement probabilities which are mapped by G̃β to produce
a batch of parameters ω⃗i. This approach reduces qubit usage and maintains the benefits of the QT method.

Fig. 2: Diagram of the Federated QT framework. Each quantum client node employs a QNN and a mapping model G̃β to
generate local target model parameters. These parameters are updated based on local datasets and aggregated at a central
node to update the global model. The framework leverages quantum computing for training while only requiring classical
computation during inference.

is expanded from 1 to nmlp, or mlp out in the following
syntax. Consequently, the qubit usage N is reduced from N =
⌈log2 m⌉ to

N = ⌈log2 nch⌉ = ⌈log2⌈
m

nmlp
⌉⌉, (7)

effectively saving approximately ⌈log2 nmlp⌉ qubits from the
original QT proposal, the original method can be considered
as a special case with nmlp = 1. Reducing qubit usage
also mitigates the issue of the exponential requirement of
measurement shots, as mentioned in the original QT study.

The remaining training process is similar to the vanilla QT
method, as depicted in Fig. 1.

V. FEDERATED QUANTUM-TRAIN

Following the original idea of FL and QFL, we introduce
the concept of the QT model within the federated framework.
In this approach, each quantum client node employs QNN
|ψ(θ)⟩ and mapping model G̃β to generate the local target
model parameters. During each training round, every quantum
client nodes update their QNN parameters and the associated
mapping model parameters based on their local datasets. These
updated parameters are sent to the central node, where they

1135



are aggregated to update the global model, as depicted in
Fig. 2. This process ensures that the global model benefits from
the QT performed at each client node, leading to improved
performance and efficiency. By integrating the QT model into
FL, we leverage the advantages of quantum computing to
reduce the number of training parameters and enhance the
scalability of distributed learning systems. Notably, compared
to traditional QFL, federated QT does not require a quantum
computer during the inference stage.

VI. RESULT AND DISCUSSION

To examine the applicability of the proposed federated QT
framework, we tested it using a VGG-like convolutional neural
network (CNN) structure with the CIFAR-10 dataset. The
target CNN model has 285226 parameters. We tested three
different QT setups: nmlp ∈ {2000, 1000, 500}, while fixing
the repetition L = 5. The required qubit usage, derived from
Eq. 7, is 8, 9, and 10 qubits, respectively. Compared to the
original QT with the same CNN model [19], which required
19 qubits, our new batched parameter generation significantly
reduces the qubit usage. Fig. 3 illustrates the number of model
parameters for the models investigated in this study, with nmlp

denoted as mlp out.

Fig. 3: Comparison of the number of training parameters for
different models used in this study.

In the upper row of Fig. 4, the Cross-Entropy loss for the
CIFAR-10 image classification task, involving 10 classes over
multiple rounds, is presented with different setups of local
epochs and mlp out, while fixing the number of clients at
4. It can be observed that a larger number of local epochs
leads to lower loss values. This outcome is expected, as
the model undergoes more frequent updates, providing more
opportunities to correct incorrect predictions.

In the lower row of Fig. 4, the local epoch is fixed to 1,
and the effect of varying the number of clients is investigated.
In this investigation, the dataset is divided into as many
pieces as the number of clients. Interestingly, increasing the
number of clients results in better performance in terms
of training loss. This improvement can be attributed to the
flexibility provided by different local models, which adjust

distinct sets of parameters corresponding to different parts of
the dataset. The parameter aggregation step then incorporates
these updates from diverse perspectives, enhancing the overall
model performance.

A noticeable trend in the figures is that models with more
parameters tend to perform better in terms of training loss.
This can be attributed to the increased expressiveness of the
corresponding models, which enhances their ability to fit the
training data. However, this observation only indicates the
model’s effectiveness on the training dataset and does not
necessarily reflect its general performance on unseen data.

As illustrated in Fig. 5, we present the testing and training
accuracy of the models investigated in Fig. 4. A notable obser-
vation is the significant overfitting in the purely classical case.
While the training accuracy of the classical model is extremely
high, its testing accuracy is slightly lower than that of the
nmlp = 2000 case. This behavior underscores an advantage
of the QT method, as highlighted in previous studies [19]:
the QT method can reduce the deviation between training and
testing accuracy, which is proportional to the generalization
error. Moreover, our batched parameter generation approach
not only significantly reduces qubit usage but also preserves
the advantage of generalization error reduction inherent in the
vanilla QT method.

While there is no clear trend for different local epochs and
the number of clients in the classical, nmlp = 2000, and
nmlp = 1000 cases, the nmlp = 500 case shows an increase
in both training and testing accuracy with an increase in local
epochs and the number of clients. This behavior demonstrates
that the federated framework combined with QT can improve
models with extreme compression, such as the nmlp = 500
case, which uses only about 10% of the original CNN model’s
parameters.

VII. CONCLUSION

In this work, we introduced the Federated QT framework,
integrating the QT model into federated learning to leverage
quantum computing for distributed learning systems. Each
quantum client node employs QNNs and a mapping model G̃β

to generate local target model parameters. These parameters
are updated based on local datasets and aggregated at a central
node, enhancing the global model through quantum-enhanced
training.

Our experiments, using a VGG-like CNN on the CIFAR-
10 dataset, demonstrate the efficacy of the Federated QT
framework. We tested three different QT setups with varying
nmlp values, significantly reducing the required qubit usage
compared to the original QT method. Specifically, our batched
parameter generation approach reduced qubit usage from 19
to as low as 8, while maintaining the benefits of generalization
error reduction.

Results indicate that models with more parameters perform
better in training loss due to increased expressiveness, but
overfitting was observed in purely classical models. The QT
method mitigated this issue, resulting in a closer alignment
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Fig. 4: The Cross-Entropy loss for the CIFAR-10 image classification task across multiple training rounds. The upper row
illustrates the effect of varying the number of local epochs and mlp out, with the number of clients fixed at 4. The lower row
demonstrates the effect of varying the number of clients while keeping the local epoch fixed at 1. The results indicate that a
larger number of local epochs and clients lead to lower loss values, suggesting improved model performance.

Fig. 5: The training and testing accuracy for the models investigated in Fig. 4. The results reveal significant overfitting in the
purely classical model, with high training accuracy but lower testing accuracy compared to the nmlp = 2000 case. The QT
method reduces the deviation between training and testing accuracy, highlighting its advantage in minimizing generalization
error. Additionally, the federated QT framework demonstrates improved performance in highly compressed models, such as
the nmlp = 500 case, which uses only about 10% of the original CNN model’s parameters.

between training and testing accuracy. The federated frame-
work combined with QT also showed improved performance
in highly compressed models, such as the nmlp = 500 case,
which uses only about 10% of the original CNN model’s
parameters.

The Federated QT framework provides a scalable and
efficient approach to distributed learning, utilizing quantum
computing to reduce training parameters and enhance model
performance. Notably, QT does not require a quantum com-
puter during the inference stage, making it highly practical
given the current limitations of quantum hardware. Our find-
ings highlight the practical benefits of integrating quantum
techniques into federated learning, paving the way for future
advancements in QML and distributed learning systems.
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