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Abstract—Recent research in quantum computing has gained
significant momentum, promising transformative advances across
various fields, including artificial intelligence (AI). This paper
focuses on quantum reinforcement learning (QRL), which utilizes
quantum neural network (QNN) to address the inherent chal-
lenges in conventional reinforcement learning (RL) frameworks.
For a comprehensive examination of QRL, in this paper, the
structure of QNN is explored in-depth, including the functional
roles of key quantum circuit gates such as the unitary, rotation,
controlled-X, and Hadamard gates. This paper also discusses the
primary components of QNN, namely state encoding, param-
eterized quantum circuits (PQC), and measurement processes.
Furthermore, the application of IBM qiskit for the visualization
of quantum states and circuits is highlighted, providing practical
insights into the deployment of quantum principles in RL.
Consequently, this paper encapsulates the potential of QRL to
revolutionize AI, positioning it as a pivotal area of future research
and development in quantum computing.

I. INTRODUCTION

A. Background and Motivation

REINFORCEMENT learning (RL) using conventional
artificial neural networks (NNs) has made many ad-

vances in various application areas, but it poses several struc-
tural limitations, which pose serious constraints, especially
in high-dimensional data processing and complex decision-
making problems. Firstly, higher-dimensional state, i.e., input
of NNs,/action, i.e., output of NNs, space is a major factor
that weighs heavily on the performance and training speed
of conventional NNs. In conventional RL, as the dimen-
sions of state space and action space increase, the number
of parameters the model needs to train increases exponen-
tially, which significantly increases the computational cost.
In addition, data sparsity in higher dimensions causes NNs
to increase the number of samples needed to train optimal
policies. In conclusion, as the agent’s action dimension in-
creases, RL using conventional artificial NNs suffers from a
curse of dimensionality. Secondly, conventional RL still does
not solve the problem related to sample effectiveness. Most
RL algorithms require large amounts of interaction data for
effective training. In real-world applications, generating such
large amounts of data can be costly and time-consuming. This
poses a major constraint for real-time applications, especially
in dynamic and uncertain environments. Thirdly, conventional
RL has challenges in dealing with partially observable-Markov
decision process (PO-MDP) environments. In many real-world
problems, not all state information can be fully observed.
Conventional NNs require additional structures, e.g., recurrent

NNs, to incorporate such partial observed information, which
increases the complexity and computational needs of the
model. Quantum reinforcement learning (QRL) is emerging
as a promising solution to solve these three problems of
conventional RL. Advances in quantum computing technology
are providing innovative possibilities in the field of artifi-
cial intelligence (AI), especially RL. Quantum AI using
quantum neural network (QNN) utilize basic principles of
quantum mechanics, i.e., superposition, entanglement, and
quantum tunneling, to overcome the structural limitations of
conventional NNs. Based on these characteristics, Quantum
AI can overcome the above three problems. Firstly, QNN
can leverage the superposition state of quantum bit (qubits)
to represent multiple possible states simultaneously. This su-
perposition allows a single qubit to represent multiple states
simultaneously, providing a way to effectively represent high-
dimensional data with fewer qubits. This significantly reduces
the resources required to solve high-dimensional problems,
enabling faster and more efficient training processing. Sec-
ondly, QNN can solve problem-related to sample effectiveness
through entanglement. Entanglement occurs when two or more
qubits are in a mutually dependent state, allowing information
from one qubit to immediately affect another. This property
allows QNN to train much deeper and wider with fewer
data, and significantly improves sample efficiency. Thirdly,
with superposition, QNN provides the ability to infer the
state of the entire system using only partial information. This
enables the development of RL algorithms that can make
overall decisions based on partial information and significantly
improves processing efficiency. Due to the characteristics of
QNN that distinguish them from conventional NNs, quantum
AI can solve a number of problems arising from RL.

Based on the advantages and features of quantum AI for RL,
this paper provides a basic mathematical explanation and vi-
sualization of QNNs. In this paper, the structure and principles
of QNN for QRL are covered in depth. In particular, the basic
structure of QNN is clarified by explaining various quantum
circuit gates, e.g., unitary gate, rotation gate, controlled-X
Gate, and Hadamard gate, etc. The structure of quantum
artificial neural networks covers three main parts, i.e., i) state
encoding, ii) parameterized quantum circuits (PQC), and iii)
measurement. Finally, this paper provides a visualization of
quantum states in bloch spheres and a visualization of quantum
circuits using IBM qiskit for smooth understanding. This
helps facilitate understanding for several system designers and
engineers entering quantum AI.
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B. Contributions

• This paper summarizes the limitations of RL using classi-
cal NNs and proposes the QNN-based QRL that can solve
these problems. A novel NN architecture is introduced to
solve the problems that existing algorithms had.

• This paper describes the mathematical representations
of various quantum circuit gates used in QNNs. Fur-
thermore, the basic structure of QNNs and the role of
each structure are introduced. These are essential for
understanding quantum circuit operations.

• A visualization of quantum states represented by Bloch
spheres and quantum circuits is presented. In addition,
how quantum states through multiple quantum circuit
gates are finally converted into probabilities in the mea-
surement phase is also visually represented.

II. PRELIMINARIES

A. Related Work

Application problems such as image classification are ad-
dressed using QNN instead of traditional convolutional neu-
ral network (CNN) [1]. Moreover, utilizing QNNs in image
classification problems requires as many qubits as pixels,
while using QCNN requires only as many qubits as the
filter size, which is advantageous in the noisy intermediate-
scale quantum (NISQ) era, where the number of qubits is
limited [2]. In addition, a study is conducted on federated
learning (FL) using QNN rather than conventional NN [3].
Finally, from the perspective of quantum AI, QNN is also
utilized for RL and communication systems [4]. RL and
algorithms that maximize specific values over time are also
widely used in aerial networks [5]–[8]. When designing an
aerial access network (AAN) through multiple UAVs, it is
important to effectively optimize the communication systems
of multiple UAVs [9]. In this environment, QNN can be used
to solve problems with QRL. Furthermore, research has been
conducted on rocket weight reduction using fewer training
parameters in the landing scenario of a reusable rocket [10].
In the AAN environment where the agent’s action dimension
is very large, quanutm multi-agent reinforcement learning
(QMARL) successfully reduced the ground stations (GSs)’s
action dimension to a logarithmic scale and learned [11].

B. Convolution Reinforcement Learning

As shown in Fig. 1, RL is a domain within the field of ma-
chine learning that focuses on enabling agents to learn optimal
behaviors through interactions with an environment. In this
paradigm, an agent observes the state of the environment and
makes decisions about actions based on these observations.
Each action taken by the agent impacts the environment, which
in turn provides new states and rewards to the agent. The
rewards serve as feedback, guiding the agent in adjusting its
actions and improving its policy to maximize future rewards.
The primary goal of RL is for the agent to discover the optimal
policy that yields the highest cumulative reward through trial
and error.

Environment

State Action Reward

Agent

Action
State, Reward

Fig. 1: The concept and components of reinforcement learning

C. Advantages of Quantum Neural Networks

Fast Training Convergence. In QNN, the training process
differs from conventional methods by utilizing the parameter
shift rule instead of the backpropagation technique used in
classical NNs. This rule offers a simpler and more direct
approach to policy gradient estimation, which can significantly
speed up the training process. This acceleration is particularly
beneficial for applications involving cube-satellites (Cube-
Sats)/unmanned aerial vehicles (UAVs) communication sys-
tems, where processing power and time are constrained. The
ability to efficiently train multiple QNN models without exten-
sive time commitments is crucial, given the limited operational
timelines and computational resources available in large-scale,
globally distributed network environments. Consequently, the
increased training speed facilitated by the parameter shift
rule in QMARL is not only advantageous but also essential
for optimizing the functionality and performance of globally
distributed networks.

Action Dimension Reduction for Efficient Qubit Utiliza-
tion. QMARL significantly reduces the action dimensions
of GSs and the number of qubits required by employing
basis measurements instead of Pauli-Z measurements. This
approach effectively overcomes the limitations associated with
the restricted number of qubits available in the NISQ era. In
multi-agent reinforcement learning (MARL) environments, the
total number of potential actions can increase dramatically,
necessitating a proportional rise in the number of qubits.
However, in the NISQ era, increasing the number of qubits
exacerbates the issue of quantum noise. Moreover, when using
Pauli-Z measurements and classical MARL, GSs face the
curse of dimensionality, making training convergence chal-
lenging as the action dimension of GSs expands exponentially.
To tackle these challenges, a novel QMARL-based scheduler
has been developed. This scheduler leverages basis measure-
ments to significantly decrease the required number of qubits
and action dimensions. Unlike Pauli-Z measurements, which
assess individual qubits against the two computational bases
(|0⟩ or |1⟩), basis measurements evaluate the entire quantum
system across all possible basis states. This approach reduces
qubit complexity logarithmically in relation to the number
of possible actions for GSs. These features are particularly
beneficial for environments that cannot utilize a large number

1146



(a) |0⟩ in Bloch sphere. (b) |1⟩ in Bloch sphere.

Fig. 2: Quantum states in Bloch sphere.

of qubits and require high action dimensions for GSs, such as
large-scale, globally distributed networks. This methodology
not only mitigates the challenges posed by quantum noise
but also improves the practical deployment and scalability
of quantum-based systems in complex distributed network
environments.

III. QUANTUM NEURAL NETWORK

A. Characteristics of Quantum Computing

In QNN, unlike in classical NNs, basic training tasks utilize
units other than bits, which is a critical aspect. In quantum
computing, the fundamental units of memory are quantum
bits, or qubits. To highlight the difference between qubits
and classical bits, consider that a register of Q classical bits
can exist in 2Q possible states. Each state can be represented
by a vector of length 2Q, where one element is 1 and all
others are 0. In quantum mechanics, a quantum state with Q
qubits is represented as a complex vector with 2Q dimensions.
This representation allows a quantum state to exist as a su-
perposition of multiple states simultaneously, unlike classical
systems where states are typically represented by a single non-
zero element. This phenomenon is referred to as quantum
superposition. As shown in Fig. 2, in quantum systems,
qubits are represented in two fundamental states using bra-ket

notation: |0⟩ :=
[
1
0

]
, |1⟩ :=

[
0
1

]
, Additionally, a normalized

two-dimensional complex vector represents a single qubit state

as follows: |ψ⟩ = A |0⟩ + B |1⟩ =

[
α
β

]
, where A and B

are complex probability amplitudes associated with the states
|0⟩ and |1⟩, respectively. These amplitudes must satisfy the
condition, i.e., ∥A∥2 + ∥B∥2 = 1. As shown in Fig. 2, QNN
computations are performed within the Bloch sphere, which
represents the 3D quantum state space, or Hilbert space. When
depicted within the Bloch sphere, a quantum state can be
geometrically represented as: |ψ⟩ = cos θ

2 |0⟩ + eiϕ sin θ
2 |1⟩ ,

where ϕ and θ denotes the relative phase and parameter that
defines the probabilities of measuring the states, i.e., |0⟩ and
|1⟩, respectively. These parameters adhere to the inequalities
0 ≤ θ ≤ π, 0 ≤ ϕ < 2π. For a system with Q qubits,
the quantum states are represented in the Hilbert space as:

|ψ⟩ =
∑2Q−1

l=0 ωl |l⟩ , where ψ, ωl, and |l⟩ denotes the quantum
state, probability amplitude, and l-th basis state of the Q-qubit
system. The probability amplitudes shall satisfy the following
conditions, i.e.,

∑2Q−1
l=0 |ωl|2 = 1. Furthermore, two quantum

states, such as |ψ⟩ and |ϕ⟩, can be jointly represented using the
tensor product for multi-qubit states as |ψ⟩⊗|ϕ⟩. However, due
to the phenomenon of quantum entanglement, a multi-qubit
state |ψ⟩ cannot always be decomposed into tensor products
of simpler systems.

B. Quantum Circuit Gates

Quantum circuit gates are used as basic computational units
in quantum computing and perform similar functions to logic
gates of classical computers. These gates manipulate the state
of qubits, processing information and perform calculations.
Quantum circuit gates operate by exploiting properties of
quantum mechanics, such as quantum superposition and en-
tanglement, providing the possibility for quantum computers
to more efficiently solve complex problems.

1) Unitary Gate: A unitary matrix is an important mathe-
matical tool used to transform the state of qubits in quantum
computing. All quantum gates apply a unitary transformation
to change the state of the qubit. A unitary gate has the property
of rotating the state to another state while preserving the
overall probability of the quantum state. Unitary matrices
define the way quantum circuit gates behave in quantum
states, and these matrices have several important mathematical
properties which is expressed as, UTU = UUT = I ,
where UT and I stand for conjugate transpose of matrix U
and identity matrix, respectively. In the realm of quantum
computing, the significance of unitary matrices—specifically
U1, U2, and U3 gates—cannot be overstated. These gates form
the backbone of operations on qubits within IBM’s quantum
computing systems, providing the necessary transformations
for executing complex quantum algorithms. The U1 gate is
a single-parameter quantum gate that applies a phase shift
around the Z-axis of the Bloch sphere. It is defined mathe-

matically by the following matrix: U1(λ) =

[
1 0
0 eiλ

]
. This

matrix operation does not alter the probability amplitudes of
the qubit states but instead introduces a phase difference of
λ between the basis states. The U1 gate is crucial for phase
kickback in algorithms like the quantum phase estimation and
is often utilized for its low computational overhead in circuit
implementations. The U2 gate extends the functionality of the
U1 gate by incorporating an additional parameter, providing a
richer set of transformations. It is expressed as,

U2(ϕ, λ) =
1√
2

[
1 −e−iλ

eiϕ ei(ϕ+λ)

]
, (1)

where λ and ϕ are constants that tune the phase of the state
|1⟩ in the angular superposition and those that regulate the
phase change introduced when mapped to the superposition
in the basis state |0⟩. The U2 gate effects a transformation
that is fundamentally a generalization of the Hadamard gate,
combining phase shifts and superposition. It enables more
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(a) X-Original. (b) RX-gate (θ = π
4

). (c) RX-gate (θ = π
2

). (d) RX-gate (θ = 3π
4

). (e) X-gate (θ = π).

(f) Y-Original. (g) RY-gate (θ = π
4

). (h) RY-gate (θ = π
2

). (i) RY-gate (θ = 3π
4

). (j) Y-gate (θ = π).

(k) Z-Original. (l) RZ-gate (θ = π
4

). (m) RZ-gate (θ = π
2

). (n) RZ-gate (θ = 3π
4

). (o) Z-gate (θ = π). (p) Hadamard-gate

Fig. 3: Quantum states with various gates on Bloch sphere.

complex state preparations and transformations, making it
suitable for diverse quantum operations and entanglement
creation. The U3 gate is the most general form of a single-
qubit unitary transformation, incorporating three parameters.
It is capable of achieving any rotation on the Bloch sphere
and is expressed by the matrix:

U3(θ, ϕ, λ) =

[
cos(θ/2) −e−iλ sin(θ/2)

eiϕ sin(θ/2) ei(ϕ+λ) cos(θ/2)

]
, (2)

where θ is a constant that rotates the qubit around the x-axis
of the Bloch sphere. This gate combines arbitrary rotations
around the Bloch sphere, encompassing and generalizing the
effects of both U1 and U2 gates. The U3 gate’s ability to
perform any conceivable single-qubit gate operation makes it
a cornerstone of quantum circuit design. These unitary gates
U1, U2, and U3 are essential for designing complex quan-
tum circuits and algorithms. Their implementation on IBM’s
quantum platforms provides quantum programmers with ver-
satile tools for manipulating qubit states, facilitating quantum
computation’s unique advantages over classical computing.
Each gate, by manipulating phases and amplitudes, allows
for the precise control necessary in quantum computation,
ensuring that quantum circuits can perform a wide variety of

algorithmic tasks effectively.

2) Rotation Gate: In quantum circuits, the rotation gates
Rx, Ry , and Rz play critical roles by enabling precise rota-
tions of qubits around the X, Y, and Z axes of the Bloch sphere,
respectively. These gates are fundamental in manipulating
qubit states for desired quantum operations and are essential
for the implementation of complex quantum algorithms. As
shown in Figs. 3(a)-(e), the Rx gate performs a rotation
around the X-axis of the Bloch sphere. It is parametrized by
θ, which represents the angle of rotation. The unitary matrix
representation of the RX gate is given by:

RX(θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]
(3)

This matrix effectively mixes the amplitudes of the computa-
tional basis states |0⟩ and |1⟩ with a phase shift introduced
by the imaginary unit i, indicating the quantum nature of the
operation. The terms cos(θ/2) and sin(θ/2) determine how
much the state vector is rotated, reflecting the probabilistic
outcomes upon measurement. Similarly, as shown in Figs. 3(f)-
(j), the RY gate rotates a qubit around the Y -axis. Like the
RX gate, it uses the angle θ to define the extent of the rotation.
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The unitary matrix for the RY gate is:

RY (θ) =


cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)


(4)

Unlike the RX gate, the RY gate involves real coefficients,
which simplifies its physical interpretation: it rotates the state
vector in the real plane of the Bloch sphere without introduc-
ing complex phase factors, directly altering the probabilities
associated with the computational basis states. As shown in
Figs. 3(k)-(o), the RZ gate focuses on altering the phase of
the qubit states around the Z-axis. This gate does not affect
the amplitudes of the quantum states but imparts a relative
phase between them. The unitary matrix for the RZ gate is
expressed as,

RZ(θ) =


e−iθ/2 0

0 eiθ/2


(5)

This matrix applies a phase shift of −θ/2 to the |0⟩ state and
θ/2 to the |1⟩ state, effectively modifying how these states
interfere with each other without changing their individual
probabilities. These rotation gates are crucial in quantum com-
puting as they enable the precise control necessary for tasks
such as quantum state preparation, quantum error correction,
and the implementation of quantum logic gates. By adjusting
the parameters of these gates, one can tailor the quantum
circuit to perform a wide range of operations, from simple
quantum state manipulations to the execution of complex
algorithms that leverage quantum mechanical principles like
superposition and entanglement.

3) Controlled-X Gate: The Controlled-X Gate, often re-
ferred to as the CNOT (Controlled NOT) gate, is a pivotal
two-qubit gate within quantum computing that performs a
conditional operation based on the state of the control qubit.
The CNOT gate is essential for creating entanglement between
qubits, which is fundamental for quantum teleportation, su-
perdense coding, and various quantum algorithms, including
quantum error correction and quantum logic circuits. The
Controlled-X Gate operates on a pair of qubits: one acts as
the control and the other as the target. The operation of the
CNOT gate depends on the state of the control qubit: If the
control qubit is in the state |0⟩, the gate leaves the state of
the target qubit unchanged. If the control qubit is in the state
|1⟩, the gate applies the X operation (equivalent to a classical
NOT operation) to the target qubit, flipping its state from |0⟩
to |1⟩ or from |1⟩ to |0⟩. The unitary matrix representation of
the CNOT gate is expressed as,

CNOT =



1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 (6)

The CNOT gate’s ability to conditionally alter the state of
qubits based on another qubit’s state makes it a critical compo-
nent for implementing logical operations in quantum circuits.
Its role in generating entanglement is also crucial, as entangled
states are key resources in nearly all quantum communication
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Fig. 4: Three components of the quantum neural network

and computation protocols. Furthermore, the simplicity of its
operation, combined with its powerful implications in state
manipulation and entanglement, underscores its utility in the
broader framework of quantum information processing.

4) Hadamard Gate: The Hadamard Gate acts on a single
qubit and has the effect of putting the qubit into a superposition
of its basis states. As shown in Fig. 3(p), it performs a rotation
of π about the axis that lies halfway between the X-axis and
Z-axis on the Bloch sphere. This transformation makes the
Hadamard Gate critical for tasks that require the creation of
superposition as a preliminary step in quantum computations.
The matrix representation of the Hadamard Gate is given by:

H = 1√
2


1 1
1 −1


The action of the Hadamard Gate on

the standard computational basis states |0⟩ and |1⟩ can be
described as follows: When applied to |0⟩, the Hadamard Gate
transforms it into a state of equal superposition of |0⟩ and
|1⟩, often written as, H|0⟩ = 1√

2
(|0⟩ + |1⟩) = |+⟩. When

applied to |1⟩, it results in a state of equal superposition with
a relative phase of π (or a negative sign) between |0⟩ and |1⟩,
i.e., H|1⟩ = 1√

2
(|0⟩ − |1⟩) = |−⟩.

IV. QUANTUM REINFORCEMENT LEARNING

As shown in Fig. 4, QNN is divided into three stages, each
of which is i) state encoding, ii) PQC, and iii) measurement.
State Encoding. In QRL, state encoding is the process by
which the states of the environment, often represented as
vectors in classical reinforcement learning, are encoded into
quantum states that can be processed by a quantum computer.
Effective state encoding is vital for harnessing the quantum
advantage, as it directly impacts the ability of the quantum sys-
tem to represent and process complex environments. Common
methods of quantum state encoding include: i) Basis encoding
: Directly maps discrete environmental states onto the compu-
tational basis of qubits. Each qubit represents a binary state,
thus allowing an exponential reduction in the number of qubits
required compared to the classical representation. ii) Amplitude
encoding : Utilizes the amplitudes of a quantum state to
encode probabilistic information about possible environmental
states, offering a compact representation that can encapsulate
a rich set of data with fewer qubits.
Parameterized Quantum Circuits. PQC serve as the func-
tional backbone of QANNs in QRL, analogous to the network
of neurons and synapses in classical neural networks. PQCs
consist of quantum gates whose parameters are adjustable and
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(a) Quantum circuit (Bell state).
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Fig. 5: Quantum circuit and probability in the measurement stage.

optimized through the learning process. In QRL, these circuits
are designed to evolve an encoded quantum state into a new
state that encodes the policy or value functions associated
with RL tasks. Parameters in PQCs are akin to the weights
in classical neural networks and are optimized based on the
feedback from the environment to improve policy decisions.
Furthermore, include rotation gates and entangling gates that
manipulate the quantum state. The choice and configuration
of these gates influence the training capabilities and efficiency
of the QRL model.
Measurement. Measurement in QRL translates the quantum
states, manipulated and evolved through PQCs, back into
classical information that dictates the actions to be taken
in the environment. This component is crucial for realizing
the outputs of quantum computations in a form that can be
practically applied to make decisions. Upon measurement, the
quantum state collapses to one of the basis states, with the
probabilities influenced by the quantum computations. The
result of this measurement is interpreted as an action or a set
of actions within the reinforcement learning framework. The
choice of measurement basis can affect the policy performance
and needs to be aligned with the QRL strategy.

V. QUANTUM CIRCUITS AND MEASUREMENTS

Fig. 5(a) shows a quantum circuit for the Bell state. In
quantum artificial neural networks, Bell states are one of
the prime examples of quantum entanglement, indicating a
strong quantum correlation between two qubits. Because the
first qubit passes through the Hadamard gate and becomes
superimposed, the probabilities of |00⟩ and |11⟩ come out
close to half-and-half (Fig. 5(b)). On the other hand, as shown
in Fig. 5(c), if the first qubit passes through the RX gate
with π/4, the quantum state is closer to |0⟩ than |1⟩ before
measurement, thus |00⟩ is greater than the probability of |11⟩.

VI. CONCLUDING REMARKS

QRL leverages quantum principles like superposition and
entanglement to overcome limitations faced by classical rein-
forcement learning systems, particularly in high-dimensional
data processing and partially observable environments. In this
paper, the various quantum circuit gates used in such QRL,
the structure of QNN, and the visualization of quantum states
are addressed.
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