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Abstract—Advancements in quantum computer hardware and
software have paved the way for the application of quantum com-
puting across various fields. With the development of computers
with thousands of qubits, the power of quantum is increasing.
Because of efficiency in high action dimensions, quantum com-
puting has advantages in multi-agent fields where the amount of
data is huge. At the same time, reinforcement learning (RL) has
gained prominence for its potential in unknown environments.
Consequently, the integration of quantum computing and multi-
agent reinforcement learning (MARL), known as quantum multi-
agent reinforcement learning (QMARL), is proposed. This paper
introduces the overall concept and applications of quantum
computing, MARL, and QMARL. It also shows the current
technology trends depending on the application. In conclusion,
the paper presents challenges and future research directions for
QMARL and shows that QMARL can be utilized in various
applications for excellent performance.

I. INTRODUCTION

Early quantum computers were developed to simulate quan-
tum physics but later expanded into broader areas. With
the advances in quantum computers, quantum computing
is being used in various fields. Quantum computers utilize
quantum bits (qubits) to achieve significant efficiency gains
and increase processing speed. The efficient management and
reliability of processing large data volumes have garnered
significant attention in fields such as artificial intelligence
(AI) where data volume is huge. Especially in mobility and
networks, many reinforcement learning (RL) algorithms have
been proposed for their advantages in uncertain environments.
However, as RL has limitations when the action dimension
is extremely high, quantum algorithms have been proposed
to manage large amounts of data efficiently. Moreover, the
application of quantum computing in multi-agent reinforce-
ment learning (MARL), which is named to quantum MARL
(QMARL), opens new avenues for dynamic environments,
leveraging quantum mechanics to optimize decision-making
processes across multiple agents. Finally, this paper proposes
an overview and applications of QMARL-based algorithms.
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Fig. 1: The structure of QNN.

II. QUANTUM NEURAL NETWORK

A. Characteristics of Quantum Computing

Quantum is composed of qubits, which differ from classical
bits (cbits). Compared to a cbit, which is simply a 1 or 0,
a qubit is expressed as a probability. This allows a qubit
to represent both 0 and 1 simultaneously, enabling a small
number of qubits to represent a large amount of data. Based
on the two-dimensional Hilbert space, the qubit state ψ is
represented as follows,

ψ=

[
α0

α1

]
=α0|0⟩+ α1|1⟩, (1)

where α0 and α1 are the probabilities of 0 and 1, respectively.
Because |0⟩ and |1⟩ have a unitary norm, the two elements
satisfy ∥ψ∥22 = ⟨ψ|ψ⟩ = |α0|2 + |α1|2 = 1. This is a
superposition of quantum states, which can represent two
states at the same moment. Another characteristic of quan-
tum is entanglement. Given the entangled state |ψAψB⟩ =
1√
2
(|ψA0ψB0⟩+ |ψA1ψB1⟩) , one of following cases occurs

with equal probability. If |ψA⟩ is observed as 0, then |ψAψB⟩
becomes |01⟩. On the other hand, if |ψA⟩ is observed as 1,
then |ψAψB⟩ becomes |10⟩. Because of this feature, when a
qubit in the entangled state is measured, the state of another
qubit is determined without measurement.

B. Quantum Neural Network

Quantum neural networks (QNNs) are constructed with
artificial neural networks and quantum computing, utilizing
quantum circuits simultaneously. Quantum circuits are basic
operations that manipulate the states of qubits and correspond
to logical circuits such as AND, OR, and NOT in classical
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Fig. 2: The progress of Reinforcement learning.

computing, but can take advantage of quantum such as su-
perposition and entanglement. As shown in Fig. 1, the input
data is sensed by multiple sensors and encoded [1] to convert
classical data into quantum data, which can be used by the
QNN. Subsequently, it is transformed through a parameterized
quantum circuit (PQC). Lastly, it is decoded into the proper
output data. The advantage of using QNN is demonstrated
in the reduction of model parameters and low memory con-
sumption [2]. It also demonstrates performance which varies
with the structure of the PQC. In addition, QNN can be used
in various areas such as network communications, resource
allocation, caching networks, and video scheduling [3].

III. QUANTUM MULTI-AGENT REINFORCEMENT
LEARNING

A. Basics of Multi-Agent Reinforcement Learning

MARL is an RL approach to multi-agent systems that solves
complex problems by breaking them down into smaller tasks.
RL algorithm is stated in a Markov decision process (MDP), a
mathematical framework for solving problems that require se-
quential decision-making, presented by {S,A, P,R, γ}. Each
element consists of a set of states S, a set of actions A,
and a discounted value γ for future reward’s value. The state
transition function P represents the probability that the next
state will be s′ when action a is taken from the current state
s at time step t, as denoted as (2),

P a
ss′ = P[St+1 = s′|St = s,At = a] (2)

and lastly, the reward R can be formulated as (3),

Ra
s = E[Rt+1|St = s,At = a] (3)

which means the reward for choosing action a in state s.
Therefore, the overall structure of RL is presented in Fig. 2.

In MARL, each agent tries to achieve maximum reward by
choosing the optimal behavior in a given environment based
on its state. The final goal is for each agent to learn the optimal
policy, either individually or collectively, to achieve a common
goal or perform a specific task. MARL has advantages in
mobility, such as cooperative navigation or manipulation in
robotics, optimal route planning in transportation systems, and
optimization of energy distribution systems. An optimal tra-
jectory planning algorithm is proposed for multiple unmanned
aerial vehicles (UAVs), using a multi-agent deep deterministic
policy gradient (MADDPG) to minimize risks caused by large
action dimensions [4]. In addition, a MARL-based resource

Fig. 3: The structure of QMARL.

allocation algorithm for UAVs is suggested by using a Q-
learning algorithm [5]. Especially, the paper demonstrates
energy efficiency in uncertain environments through simula-
tions with multiple UAVs. In robotics, a collision-avoiding
algorithm is proposed to avoid collisions between each of
the agents in multiple mobile robots [6]. However, due to
uncertainty about its applicability in the real world, experi-
ments in heterogeneous environments were required. A multi-
robot system architecture composed of cooperative searching
and local map merging is proposed [7], with experiments
conducted in the real world.

B. Quantum Multi-Agent Reinforcement Learning

QMARL is a research field that applies the principles of
quantum computing to MARL. It utilizes quantum character-
istics like entanglement and superposition to ameliorate the
computational limitations and efficiency issues of traditional
MARL as shown in Fig. 3. QMARL attempts to use the
fundamental principles of quantum mechanics to improve the
performance of RL algorithms and more effectively solve
optimization problems. When controlling multiple agents, it
can efficiently minimize computational complexity by lever-
aging the computational superiority of quantum mechanics [8].
Furthermore, this characteristic can expedite the training pro-
cess and facilitate the resolution of more intricate decision-
making challenges with large action dimensions [9]. Because
of the many advantages of quantum mechanics, applications
in mobility with large action dimensions are getting more
attention. Effective management of large-scale autonomous
mobility systems is demonstrated without the exponential in-
crease in computational complexity associated with traditional
MARL algorithms [10]. An algorithm composed of a quantum
actor and a quantum centralized critic demonstrates resource
efficiency, reducing the number of qubits from 2n to N [11].
The paper showed that the algorithm outperforms traditional
MARL when the number of agents is exponentially large such
as autonomous aerial networks composed of multiple UAVs.
Another QMARL algorithm demonstrates efficient resource
allocation performance that can be applied to a microgrid
(MG), the self-sufficient electricity system in smart cities [12].
In addition to various applications, the quantum meta MARL
algorithm is proposed by applying meta-learning to quickly
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adapt and optimize for specific tasks or environments, trying
to improve the performance of QMARL by utilizing other
methods [13]. A centralized training and decentralized exe-
cution (CTDE) QMARL framework is proposed by designing
a variational quantum circuit [14]. Moreover, an algorithm that
provides stabilized learning and a more optimal policy even in
larger dimensions is proposed by adding an experience replay
buffer and an additional target network [15]. Consequently,
QMARL has great applicability to various fields that require
many agents and high action dimensions such as network com-
munication, resource allocation, and route optimization [16].

IV. CHALLENGES AND FUTURE DIRECTIONS

This section introduces the challenges of QMARL. QMARL
algorithms have been applied and studied in various fields,
however, there are many challenges [17].

• Quantum hardware limitation: Quantum hardware has de-
veloped overwhelmingly compared to the past, including
a 1000-qubit quantum chip. However, to encode classical
data of multi-agent systems to quantum data, the quantum
hardware is still insufficient [18].

• Interoperability with existing classical Systems: Various
quantum algorithms have been developed and prove
their effectiveness. However, current QMARL algorithms
cannot fully guarantee their applicability with existing
classical systems, due to complex data structures and
memory [19].

• Low accessibility: Despite the existence of open-source
platforms such as Qiskit, Cirq, and Forest, quantum
computing has lower accessibility to quantum algorithms
compared to existing algorithms. These quantum plat-
forms are less accessible than existing platforms such
as TensorFlow or PyTorch in terms of application and
verification as a multi-agent system.

• Limitations of qubit utilization: Current quantum tech-
nology cannot maintain the quantum state, making it
difficult to preserve quantum information for a long
time. Consequently, it limits the number of available
qubits which restricts computational capabilities, and the
possibility of errors occurring can be high [20].

V. CONCLUDING REMARKS

This paper introduces the basic concepts of quantum and
presents the applications and limitations of QMARL. With
the recent advances in software and hardware of quantum
computers, algorithms have been proposed in various fields.
There is a clear difference in accuracy and learning speed
depending on the QMARL algorithms. In addition, since quan-
tum computing reduces the action dimension in the logarithmic
scale, it has the advantage of efficient learning with less
memory when fused with MARL. The paper introduces recent
research through papers in various fields such as networks,
robotics, and transportation. This paper provides an overview
of the concepts and applications of QMARL. By suggesting
challenges that need to be improved in QMARL, it provides
several discussions on future research directions.
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