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Abstract—The convolutional neural network (CNN) is widely
utilized in computer vision due to its ability to effectively harness
correlation information within data. However, when the data’s
dimensionality or the model’s complexity becomes excessively
large, CNN faces significant challenges in maintaining efficient
learning. The quantum convolutional neural network (QCNN)
offers an innovative solution by leveraging quantum computing
environments, to address problems conventionally solved by CNN
or enhance the performance of existing learning models. This
paper proposes a model of the CNN structure for quantum
computing and introduces a method for enhancing model perfor-
mance by integrating heterogeneous knowledge transfer (HKT)
for QCNN with the CNN model used in conventional computer
vision tasks. Furthermore, this paper examines the feasibility
of the QCNN-HKT model in comparison to CNN and QCNN
by conducting training experiments on the KITTI dataset with
quantum computing simulation libraries Torchquantum.

I. INTRODUCTION

Quantum computers are rapidly emerging as an innovative
solution to challenges that conventional computers have yet to
overcome [1]. These devices introduce a unique computing
paradigm, characterized by their use of superposition and
entanglement—features not present in conventional computing
environments—allowing for significant performance improve-
ments through qubit parallelism [2]. Owing to these unique
capabilities, make quantum computers increasingly recognized
as a promising approach to solving complex algorithmic
problems in real-world applications [3], [4]. As research
advances in optimization techniques, such as gradient descent
on quantum devices, the potential for more efficient quantum
machine learning, particularly in fine-tuning hyperparameters,
is becoming more apparent [5]. Among the various models,
quantum convolutional neural networks (QCNNs) represent a
specialized form of quantum neural networks (QNNs) that
utilize QNNs as quantum convolutional filters. Due to their
convolutional filter architecture, QCNNs have gained signif-
icant attention for their potential to reduce the number of
qubits required [6]. Unlike the conventional QNN structure,
which uses parameterized quantum circuits (PQC) as fully
connected layers and thus requires increasing qubits based
on input and output dimensions, QCNNs can function with
fewer qubits by leveraging quantum convolution filters. This
makes QCNNs particularly suitable for applications during
the noisy intermediate-scale quantum (NISQ) era, such as
autonomous driving. However, QCNNs are still in the de-
velopmental stages, unlike the well-established conventional
CNNs, making their implementation more challenging [7].

Fig. 1: Comparison between quantum convolution and con-
ventional convolution.

Therefore, we introduce heterogeneous knowledge transfer
(HKT) between conventional CNNs and QCNNs, QCNNs
to enhance performance [8]. HKT is a training method that
transfers knowledge from a teacher NN, typically a pre-trained
conventional CNN, to a student NN, in this case, a target
QCNN. Due to its simplicity and efficiency, HKT is widely
used to compress models and improve performance. This
paper presents a method for enhancing QCNN performance
by integrating HKT with the CNN model used in conventional
computer vision tasks. Additionally, the paper evaluates the
feasibility of the QCNN-HKT model by comparing it to CNN
and QCNN models through training experiments on the KITTI
dataset using quantum computing simulation libraries such as
Torchquantum.

II. QUANTUM NEURAL NETWORK

QNNs are regarded as an advanced form of NNs that
address the limitations inherent in conventional NNs [9]. A
QNN is composed of three key processes: i) encoding, ii)
PQC, and iii) decoding. This section provides an overview
of these fundamental processes in QNNs, which are essential
for constructing the proposed QCNN.

A. Basic Quantum Operations

In contrast to a conventional bit, which stores information as
either |0⟩ or |1⟩, a qubit can exist in a superposition of states.
The nature of a qubit can be mathematically represented as
|Φ⟩ ≜

∑2q

k=1 αk |k⟩, where q denotes the number of qubits,
and αk represents the corresponding amplitudes, satisfying
∀q ∈ N[1,∞) and

∑2q

k=1 |αk|2 = 1. The initialized quantum
state of q qubits is denoted as |0⟩⊗q , where ⊗ indicates
the tensor product. Quantum states are manipulated through
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quantum gates, which are operators analogous to conventional
logic gates for bits. These quantum gates are unitary matrices.
The set of quantum gates for encoding is denoted by UE , while
those within the PQC are represented by UT .

B. Encoding

The encoding process is achieved through the application
of the quantum gate set UE . Utilizing this set of gates, the
encoded quantum state is expressed as |ψx⟩ = UE(x)|0⟩⊗q ,
where x represents the input conventional data.

C. Parameterized Quantum Circuit

Following the encoding of the quantum state |ψx⟩ =
UE(x)|0⟩⊗q , the PQC adjusts its parameters through the set
of trainable gates [10]. The PQC is comprised of trainable
rotation gates and controlled gates. The rotation gates modify
the quantum state along the X , Y , and Z axes, while the
controlled gates create entanglement among the target qubits.
Consequently, the encoded quantum state |ψx⟩ is transformed
into |ψx,θ⟩ = UT(θ)|ψx⟩, where the PQC includes trainable
parameters θ, distinguishing it from the encoding gates.

D. Decoding

Upon obtaining the transformed quantum state |ψx,θ⟩, it
becomes essential to decode this quantum state into a con-
ventional output. Given the inherent properties of qubits,
quantum states cannot be directly utilized within conven-
tional computing. Consequently, QNNs rely on the set of
probability expectations. The expectation value ⟨Ox,θ⟩ =∏

M∈M ⟨ψx,θ|M |ψx,θ⟩ represents the expectation of the
transformed quantum state |ψx,θ⟩ with respect to the Hermi-
tian operator M . To decode the quantum information from
the transformed quantum state, this paper employs Pauli-
Z measurement, setting M = {Ml}ql=1, where Ml =
I⊗l−1 ⊗ Z ⊗ I⊗L−l. Here, I and Z represent the identity

matrix
[
1 0
0 1

]
and the Pauli-Z matrix

[
1 0
0 −1

]
, respectively.

Through the decoding process, the QNN achieves values that
satisfy ⟨Ox,θ⟩ ∈ [−1, 1]⊗q .

III. QUANTUM CONVOLUTIONAL NEURAL NETWORK

QNNs are recognized as next-generation NNs capable of
addressing the limitations encountered by conventional NNs.
However, the current availability of qubits still needs to be
increased for many practical applications. Consequently, this
paper focuses on the QCNN, which aims to overcome some
of the constraints associated with QNNs. QCNN, inspired
by the conventional CNN, substitutes the conventional CNN
filters with those based on QNNs. By utilizing QCNN for
input data analysis, it is possible to alleviate the limitations
posed by the scarcity of qubits during the NISQ era [11].
Fig. 1 presents a comparison between conventional CNN
and QCNN. In conventional CNN, a convolution operation
is conducted, as shown in Fig. 1 (a). The convolution filter
performs element-wise multiplication between the data within
the sliding window of the input image and the trainable filter,

Fig. 2: Architecture of the heterogeneous knowledge transfer.

producing deterministic feature values [12]. During the train-
ing phase, the parameters of the trainable gates are adjusted
to minimize the loss function. In contrast, QCNN employs a
different convolution process. Fig. 1 (b) depicts the quantum
convolution process within QCNN, where trainable quantum
circuits, or QNNs, serve as the convolution filters [13]. Ini-
tially, conventional input data is encoded into the initialized
quantum circuit. After encoding, the quantum states evolve
through PQC, and the final quantum state is measured to be
decoded into conventional values. The QCNN model inte-
grates the convolution and pooling layers, which are essential
components of CNN, into quantum systems. The convolution
circuit discovers hidden states by applying multiple qubit gates
between adjacent qubits. The pooling circuit then reduces the
quantum system’s size by either measuring a subset of the
qubits or applying 2-qubit gates, such as CNOT gates. This
sequence of convolution and pooling circuits is repeated. If
the system size is sufficiently reduced, classification result is
predicted by the fully connected circuit.

IV. HETEROGENEOUS KNOWLEDGE TRANSFER

The QCNN is in the early stages of development, which
presents several challenges in optimization techniques and
training algorithms, leading to potential performance degra-
dation. To mitigate this performance decline when applying
QCNN to conventional CNN-based applications, this paper
proposes the adoption of HKT as Fig. 2. KT is a training
method widely employed in conventional NNs. KT is typically
used when there are significant differences in performance
characteristics between models. For instance, consider two
conventional NNs: one with substantial width and depth and
another with shallower dimensions. KT can be executed by
designating the larger NN as the teacher and the smaller NN
as the student, and by comparing the knowledge of these
models. Additionally, if one NN is pre-trained while the other
is not, KT can be applied by setting the pre-trained NN as
the teacher and the other as the student. In this scenario,
the target loss function is augmented with an additional loss
regularizer, such as L2 loss, to facilitate KT by minimizing the
difference between the logits of the models. This regularization
enables robust student NN training. Drawing inspiration from
this approach, this paper suggests implementing KT between
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Fig. 3: Detection accuracy on KITTI for car category evaluated
using the metric of the average precision AP50.

heterogeneous models, where the teacher model is a pre-
trained conventional CNN, and the student model is a QCNN.
To achieve HKT between these heterogeneous models, the
loss regularizer is defined as the difference between the logits
of the pre-trained conventional CNN and the student QCNN.
This regularizer is then incorporated into the loss function of
the student QCNN, thereby allowing the student QCNN to be
influenced by the logits of the teacher CNN. Thus, the loss
function incorporating the HKT regularizer can be expressed
as Ltotal = Lstudent(y, σ(f(⟨O⟩))) + αD(σ(f(⟨O⟩)), σ(ỹ)),
where y and ỹ represent the actual labels and the predicted
softened labels provided by the teacher model, respectively.
Lstudent and Ltotal denote the original classification loss
and the total loss with KT, respectively. D(·) represents
the function calculating the difference between logits using
softmax.

V. PERFORMANCE EVALUATION

For the simulation of the proposed QCNN-HKT, the soft-
ware environment includes Python version 3.8.10, along with
quantum computing simulation libraries torchquantum v0.1.5
and PyTorch version 1.8.2 LTS. To assess the performance
and potential of QCNN-HKT, object detection is utilized
as with the KITTI dataset. Fig. 3 illustrates the object de-
tection results of conventional CNN, QCNN, and QCNN-
HKT, each integrated with RPN modules for object detection.
The performance of each model is evaluated based on the
average precision (AP) across intersection over union (IoU)
metrics for vehicles with scores on the (easy, moderate, hard)
KITTI dataset. The conventional CNN achieves the highest
AP across IoU metrics. However, the performance of QCNN is
significantly improved when the HKT strategy is applied to the
same metrics. Specifically, QCNN-HKT shows a performance
increase in AP50 compared to QCNN alone, which is almost
similar to conventional cnn. These results underscore the
potential advantages of employing HKT training strategies for
object detection during the NISQ era.

VI. CONCLUDING REMARKS

The QCNN integrates a CNN model with a quantum
computing environment, allowing for a variety of innovative
approaches. QCNN offers a potential solution for complex
real-time classification tasks that are challenging to address
with conventional methods and serves as a more effective
and efficient learning model compared to conventional CNN
models. Additionally, within the context of NISQ computers,
QCNN is expected to deliver more efficient and advanced
outcomes for complex and large-scale learning tasks. To fur-
ther enhance performance, HKT is employed between different
models. This paper corroborates the feasibility of QCNN with
the HKT strategy.
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