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Abstract—This paper explores the application of reinforcement
learning (RL) to torpedo guidance with a focus on obstacle
avoidance and target acquisition in dynamic environments. By
employing a dual-actor network approach and a regularization
technique for the critic network, the proposed method demon-
strates robust performance in scenarios with random obstacle
placements and target directions. Our results show that the
system effectively navigates toward the target while avoiding
obstacles, leveraging reinforcement learning to optimize torpedo
trajectories. The study addresses the challenges of overestimation
and underestimation biases common in reinforcement learning
methods, such as deep deterministic policy gradient (DDPG), by
utilizing the double actors and regularized critics (DARC) algo-
rithm. This approach has potential implications for enhancing
the autonomy and efficiency of military applications in complex
and uncertain settings.

I. INTRODUCTION

Reinforcement learning (RL) is a branch of artificial intel-
ligence (Al) in which an agent interacts with an environment
through a sequence of decisions. The primary goal of rein-
forcement learning is to guide the agent to take actions that
maximize the cumulative expected reward over time, thereby
achieving optimal outcomes. Recent advancements in the field
of RL have been crucial in solving various complex decision-
making problems [I]-[3].

Particularly in the military domain, the application of Al has
shown significant effectiveness in protecting friendly forces
and efficiently neutralizing adversaries at a lower cost [4].
Warfare systems, such as weapons, navigation, and sensors,
can employ Al to make tasks more efficient and less dependent
on human input. In many cases, Al systems can rapidly and
effectively analyze situations and make optimal decisions in
critical moments.

In this paper, we conducted a study on torpedo guidance
based on reinforcement learning, focusing on obstacle avoid-
ance and target acquisition. By using two actor networks
and applying a regularization technique to the critic network,
we achieved stable performance even when the positions of
obstacles and the target’s direction were random [5].

This paper is structured as follows: In Sec. II, we provide
an overview of reinforcement learning and discuss the recent
technological trends in applying reinforcement learning to
obstacle avoidance and path planning. In Sec. III, we describe
our system model and the problem in detail, followed by a
discussion of the implementation results. Finally, we conclude
in Sec. IV.
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II. PRELIMINARIES

A. Reinforcement Learning

RL focuses on training an agent to learn an optimal policy
in a given environment. The agent interacts with the envi-
ronment by observing its state, selecting actions accordingly,
and receiving rewards as a result. RL aims to learn a policy
that maximizes the long-term cumulative reward through these
interactions.

Reinforcement learning is generally divided into model-
based and model-free approaches. In the model-based ap-
proach, the agent learns or is provided with a dynamic model
of the environment, which it uses to predict future states
and rewards, thereby designing an optimal policy. In contrast,
the model-free approach does not involve directly learning
the environment model; instead, the agent learns the optimal
policy or value function directly from experience. The key
components of reinforcement learning are about the agent’s
and environment’s interaction. Agent means the learner or
decision-maker observing the environment to achieve a goal.
State (s) 1 the information that the agent can observe from the
environment. The state represents the situation at a specific
point in time within the environment. Actions (a) are the
choices available to the agent in a particular state. Each action
allows the agent to transition to the next state by receiving a
reward (r). The reward is the feedback that the agent receives
from the environment due to taking a specific action. The
reward indicates how desirable the action was, and the primary
goal of RL is to maximize this reward. Policy (m) is the
strategy that determines the action the agent will take given
a particular state. The policy can be either probabilistic or
deterministic. To obtain the expected value of the cumulative
reward that can be obtained by starting from a specific state
and following the optimal policy, the value function (V(s)) is
used to assess how advantageous it is for the agent to be in
a particular state. Similar to the value function, the expected
value of the cumulative reward when taking a specific action
in a specific state can be obtained from Q-Function. The Q-
function evaluates state-action pairs and plays a crucial role
in selecting the optimal action.

Reinforcement learning algorithms are broadly categorized
into value-based, policy-based, and actor-critic approaches. Q-
learning, a value-based method, learns the Q-function to derive
the optimal policy, while policy gradient methods, such as the
policy gradient algorithm, directly learn the policy itself. The
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Fig. 1: Torpedo avoids obstacles and heads towards the target

actor-critic method combines policy-based and value-based
approaches, simultaneously learning the policy and the value
function. Among them, the actor-critic method has recently
become RL’s most widely used algorithm, combining policy-
based and value-based approaches. The actor represents the
policy that determines the actions to take in a given state. The
actor learns a policy function my(s), where 6 represents the
parameters of the policy function, which takes the state s as
input and outputs an action a. The actor’s goal is to update the
policy to maximize the cumulative reward through interactions
with the environment. Using policy gradient methods, the
actor updates the policy in the direction that increases the
expected cumulative reward under the current policy. The
critic evaluates the actions taken by the actor. It learns a Q-
function or value function V'(s) for the given state s and the
action a chosen by the actor. Through this, the critic assesses
how good the current policy is and provides feedback to the
actor to update the policy. During the learning process, the
critic approximates the Q-function or value function using the
Bellman equation. The value calculated by the critic is crucial
information for the actor to improve the policy.

B. Related Work

Advantage actor-critic (A2C) uses an advantage function in-
stead of temporal-difference (TD) error to evaluate how much
better the current action is compared to the average, updating
the policy based on this evaluation [0]. A2C is more stable
than conventional policy gradient methods because it uses the
advantage function, which reduces the variance in the gradient
estimates. However, It still has computational overhead due
to the need to calculate the advantage function, which can
slow down the training. A novel real-time task scheduling
method is presented for edge-cloud environments using the
A2C algorithm combined with deep reinforcement learning
[7]. Proximal policy optimization (PPO) limits the size of
policy updates to prevent instability caused by overly large
updates [2]. PPO is relatively simple to implement compared
to other advanced reinforcement learning algorithms, making

it a popular choice in research and practical applications. How-
ever, PPO can be sample-inefficient, meaning it often requires
a large number of interactions with the environment to achieve
good performance, especially in tasks with high-dimensional
action spaces. The PPO algorithm is applied to address active
collision avoidance for unmanned surface vehicles (USVs) in
complex maritime environments. By incorporating a mathe-
matical model of the USV, dynamic obstacle generation, and
a reward mechanism, the approach effectively trains a deep
convolutional neural network (CNN) through simulations.
Deep deterministic policy gradient (DDPG) is particularly
well-suited for tasks with continuous action spaces, where
traditional discrete-action algorithms like deep-Q network
(DQN) struggle [9]. It is an off-policy algorithm that can
reuse past experiences stored in a replay buffer. This improves
sample efficiency compared to on-policy methods like A2C
and PPO. To enhance autonomous drone mobility control, the
DDPG-based method is applied to solve real-time obstacle
avoidance in challenging environments. The research inte-
grates sensing-aware nonlinear control with human-in-the-loop
feedback through human-computer interaction (HCI), enabling
the system to adapt to unforeseen scenarios effectively.

III. REINFORCEMENT LEARNING FOR TORPEDO
GUIDANCE WITH OBSTACLE AVOIDANCE

Our objective is for the torpedo model to hit a target moving
in a straight line within a 2D environment. Fig. | plots the
modeling of a simplified torpedo environment. The orange
curve represents the torpedo’s trajectory, while the blue line
indicates the target’s path. The torpedo starts at (0,0) and
aims to avoid obstacles that are randomly generated while
pursuing a target moving from the (0,100) direction at a
random angle. The torpedo moves at 1.5 times the speed of
the target, allowing it to hit the target if it finds an appropriate
path. In this system, the state is composed of information
about the torpedo, target, and obstacles. The state includes the
distance and bearing between the torpedo and the target, as
well as the distance and bearing between the torpedo and the
obstacles. The distance between the torpedo and an obstacle
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Fig. 2: Reward over training steps

is calculated as the distance between the torpedo and the
center of the obstacle, minus the radius of the obstacle. The
action includes the torpedo’s movement direction, producing
a continuous action in degrees ranging from 0 to 359.9. The
reward function incorporates factors that guide the torpedo to
avoid obstacles and reach its destination. First, as a transition
reward, it includes the difference between the distance from the
torpedo to the target in the previous step and the current step.
Additionally, to prevent collisions with obstacles, a higher
reward is given when the absolute value of the bearing between
the torpedo and the obstacle is large. If the torpedo collides
with an obstacle or fails to hit the target within the specified
steps, it receives a large negative reward. Conversely, if it
hits the target within the designated steps, it receives a large
positive reward, and the episode terminates.

We applied the DARC algorithm, which demonstrates strong
performance in highly random environments. It investigates
the use of double actors to improve value estimation in
reinforcement learning, addressing the overestimation and
underestimation biases seen in methods like DDPG [5].

Fig. 1 illustrates the trajectories of the torpedo when the
target moves in different directions and obstacles are generated
at random positions. It can be observed that the torpedo
detects the positions of the obstacles and avoids them to reach
the target. Fig. 2 shows the rewards obtained per step as
training progresses. It can be seen that the reward increases
continuously and converges over time.

IV. CONCLUDING REMARKS

In this paper, we explored the application of RL for tor-
pedo guidance with a focus on obstacle avoidance and target
acquisition in a dynamic environment. By utilizing the DARC
algorithm, we addressed the challenges of overestimation
and underestimation biases common in reinforcement learning
methods, such as the DDPG. Our approach demonstrated ro-
bust performance in highly variable scenarios where obstacles
and target positions were randomized, indicating the potential
of reinforcement learning in complex and uncertain military

applications. Future work could involve expanding the current
model to three-dimensional environments and integrating ad-
ditional environmental factors, such as varying torpedo speeds
and more obstacles.

ACKNOWLEDGEMENTS

This work was supported by Institute of Information &
Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government [MSIT (Min-
istry of Science and ICT (Information and Communica-
tions Technology))] (RS-2024-00439803, SW Star Lab) for
Quantum AI Empowered Second-Life Platform Technol-
ogy. J. Kim is the corresponding author of this paper
(joongheon@Rkorea.ac.kr).

REFERENCES

[11 W.J. Yun, S. Park, J. Kim, M. Shin, S. Jung, D. A. Mohaisen, and J.-H.
Kim, “Cooperative multiagent deep reinforcement learning for reliable
surveillance via autonomous multi-UAV control,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 10, pp. 70867096, October 2022.

[2] W. J. Yun, M. Shin, D. Mohaisen, K. Lee, and J. Kim, “Hierarchical
deep reinforcement learning-based propofol infusion assistant framework
in anesthesia,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 35, no. 2, pp. 2510-2521, February 2024.

[3] N. Zhao, Y.-C. Liang, D. Niyato, Y. Pei, M. Wu, and Y. Jiang, “Deep
reinforcement learning for user association and resource allocation in
heterogeneous cellular networks,” IEEE Transactions on Wireless Com-
munications, vol. 18, no. 11, pp. 5141-5152, November 2019.

[4] H. Lee and S. Park, “Sensing-aware deep reinforcement learning with
HClI-based human-in-the-loop feedback for autonomous nonlinear drone
mobility control,” IEEE Access, vol. 12, pp. 1727-1736, January 2024.

[5] J. Lyu, X. Ma, J. Yan, and X. Li, “Efficient continuous control with
double actors and regularized critics,” in Proc. of the AAAI Conference
on Artificial Intelligence, vol. 36, no. 7, Vancouber, Canada, June 2022,
pp. 7655-7663.

[6] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Sil-
ver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforce-
ment learning,” in Proc. International Conference on Machine Learning
(ICML), ser. Proceedings of Machine Learning Research, vol. 48, New
York, NY, USA, June 2016, pp. 1928-1937.

[7] J. Lu, J. Yang, S. Li, Y. Li, W. Jiang, J. Dai, and J. Hu, “A2C-DRL:
Dynamic scheduling for stochastic edge—cloud environments using A2C
and deep reinforcement learning,” IEEE Internet of Things Journal,
vol. 11, no. 9, pp. 16915-16927, May 2024.

[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
July 2017.

[9] T.P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learn-
ing,” in Proc. 4th International Conference on Learning Representations
(ICLR), Caribe Hilton, San Juan, Puerto Rico, May 2016.

1165



