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Abstract—The advent of smart industry, propelled by the inte-
gration of digital technologies and automation, has revolutionized
manufacturing and industrial processes. Robotics and artificial
intelligence (AI) are at the forefront of this transformation,
driving extensive research into robotic automation and motion
planning. Traditional motion planning algorithms, such as artifi-
cial potential fields, bio-inspired heuristics, and sampling-based
methods, often falter in complex environments due to their high
computational demands and tendency to produce non-optimal
solutions. Reinforcement learning (RL) has emerged as a powerful
alternative, offering real-time adaptation and optimal decision-
making in dynamic settings. This paper reviews the inherent
limitations of classical motion planning approaches and explores
contemporary trends in RL-based methods, with a focus on their
application in smart industry. It highlights the advantages of RL
in enhancing adaptability, efficiency, and robustness, particularly
in high-dimensional and dynamic environments. Key discussions
include the integration of RL with traditional techniques, the
extension of RL applications across various domains, and the
role of sensor-based approaches in improving motion control.

Index Terms—Robotics, Manipulator, Motion Planning, Arti-
ficial Intelligence, Reinforcement Learning, Smart Industry

I. INTRODUCTION

Smart industry represents a significant paradigm in manu-
facturing and industrial processes, driven by the integration
of digital technologies and automation. Robotics and artificial
intelligence (Al) constitute foundational elements within smart
industry, leading to extensive research into robotic automation
that leverages diverse data sources [1]. In the field of robotics,
motion planning involves the computation and optimization
of collision-free and safe trajectories toward target locations
within specified environments, with a particular emphasis on
enhancing both accuracy and path efficiency [2]. Although var-
ious algorithms, including artificial potential fields (APF), bio-
inspired heuristic methods, and sampling-based techniques,
have been developed for optimization purposes, these ap-
proaches often require substantial computational resources
and suffer performance degradation in complex environments.
This limitation restricts their ability to consistently achieve
optimal solutions. In contrast, reinforcement learning (RL) has
attracted significant attention due to its capacity for real-time
adaptation in complex and dynamic environments, as well as
its robustness in discovering globally optimal solutions [3].
This paper offers a concise review of the limitations associated
with classical algorithms and explores contemporary research
trends in reinforcement learning-based motion planning in
smart industry.
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II. MoTioN PLANNING FOR SMART INDUSTRY
A. Path and trajectory planning

Motion planning is generally categorized into two primary
types: path planning and trajectory planning. Path planning
focuses on determining the movement direction by generating a
path from the initial point to the goal point, without accounting
for the dynamic characteristics or motion constraints of the
robot. In contrast, trajectory planning involves the execution
of movement by defining the path as a function of time, thereby
incorporating a temporal dimension. Since path planning does
not consider the robot’s speed or acceleration during move-
ment, it lacks critical information necessary for effective robot
control. Conversely, while trajectory planning accounts for
temporal aspects, it does not inherently guarantee a collision-
free path. Therefore, both path planning and trajectory plan-
ning are essential components of a comprehensive approach
to robot motion planning [4].

B. Types of classical motion planning

Classical approaches to motion planning include APF, bio-
inspired heuristics, and sampling-based path planning meth-
ods. The APF method generates a potential field around the
target point and obstacles, making it relatively simple to
implement and effective for real-time obstacle avoidance [5].
However, it suffers from the local minimum problem and is in-
effective in environments with multiple obstacles. Bio-inspired
heuristics encompass methods such as genetic algorithm (GA)
and particle swarm optimization (PSO). GA mimics biological
evolution to find optimal solutions by applying the principle
of survival of the fittest [6]. While GA has a high probability
of finding a global optimum, it is computationally intensive.
PSO, in contrast, is based on the swarm behavior of birds,
where particles adjust their movement direction based on
the best solutions identified by both the individual particles
and the entire swarm. Although PSO is intuitive and easy
to implement, it can converge to a local minimum and is
difficult to apply in dynamic environments [7]. Sampling-based
path planning methods generate random samples within the
configuration space to identify a path, using techniques such
as the probabilistic roadmap method (PRM) [8] and rapidly-
exploring random trees (RRT) [9]. These methods are advan-
tageous for quickly exploring paths in complex environments,
but they often produce paths of lower quality, necessitating
further refinement.
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III. REINFORCEMENT LEARNING BASED MOTION PLANNING

Reinforcement learning optimizes policies through direct
interaction with the environment, enabling real-time adaptation
and the discovery of optimal solutions in dynamic contexts.
Its inherent adaptability, coupled with its capacity to address
complex, nonlinear, and unpredictable problems, provides a
significant advantage over traditional methods, which often
struggle in such scenarios. The robust performance of RL,
along with its focus on long-term rewards, makes it particularly
well-suited for path planning applications within the smart in-
dustry. In smart manufacturing environments, where flexibility,
precision, and efficiency are paramount, RL offers significant
potential by enabling autonomous systems to adapt in real-time
to changing conditions and complex tasks. Recent research
shows how RL is being used to improve motion planning and
control, supporting the growing demands of smart industry.

A. RL-based performance enhancements

Reinforcement learning has been the focus of numerous
studies aimed at advancing robot motion planning and control
due to its potential in enhancing the adaptability and perfor-
mance of industrial robots in complex and dynamic environ-
ments. R. Meyes et al. introduced an RL-based approach that
enables robots to autonomously learn and adapt to complex
tasks, such as welding and cutting, without pre-programmed
instructions [10]. The method was validated using a wire loop
game, where the RL agent successfully learned to control the
robot through real-time feedback, demonstrating the ability
to generalize to new configurations. This approach reduces
computational costs and enhances flexibility and robustness,
improving the resilience of industrial robots in manufacturing.
P. Chen et al. propose an RL-based method using the soft
actor-critic (SAC) algorithm and prioritized experience replay
(PER) to improve dynamic obstacle avoidance and real-time
path planning [11]. The SAC algorithm’s entropy-based explo-
ration strategy helps avoid local optima, ensuring more effec-
tive learning in unpredictable environments. J. Weber and M.
Schmidt describe a method using the deep deterministic policy
gradient (DDPG) algorithm to enhance inverse kinematics and
motion planning for industrial robot manipulators [12]. The
integration of a novel state space representation with a tailored
reward function allows the DDPG agent to precisely control the
robot’s tool, even under challenging conditions with arbitrary
start and target positions.

B. Integrate with existing methods

Deep reinforcement learning(DRL) is increasingly being
used to address the limitations of traditional methods, offering
new ways to enhance flexibility, adaptability, and performance
in scenarios where classical approaches fall short. B. Sangio-
vanni and M. Piastra describe a hybrid control methodology
that integrates classical motion planning algorithms with DRL
for robot path planning and obstacle avoidance [13]. Their
method enhances traditional techniques by incorporating a
DRL-based approach that activates when the robot encounters
dynamic obstacles, allowing it to adjust its path dynamically.

This hybrid system combines the reliability of classical meth-
ods with the adaptability of DRL, providing a robust solution
for complex environments while reducing the computational
burden of real-time planning. Similarly, Li et al. propose
a hybrid framework that integrates traditional path planning
with DRL [14]. This framework leverages the exploratory
capabilities of traditional planners alongside the exploitation
strengths of DRL, making it well-suited for complex and
dynamic industrial environments. By using a DRL algorithm
with Tsallis entropy-based automatic adjustment, the method
optimizes both path planning and inverse kinematics for re-
dundant robot manipulators, achieving energy-efficient and
adaptive solutions in real-time industrial applications.

C. Extend application

Reinforcement learning in robot motion control is driving
the expansion of its applications across various fields, enabling
more precise, adaptive, and efficient solutions for complex and
dynamic tasks. Z. Li and C. Su describe an approach that
enhances RL for robot manipulation and grasping tasks using
dynamical movement primitives (DMPs) in a humanoid-like
mobile manipulator [15]. By integrating RL. with DMPs, the
method effectively addresses challenges in vision feedback,
manipulation dynamics, and external perturbations, making it
suitable for both high-level operational space planning and
low-level joint control. This integration allows the robot to
perform complex tasks like grasping in uncertain environ-
ments, extending RL’s applicability in robotics by improving
redundancy resolution, trajectory optimization, and real-time
adaptability. In space operations, where adaptability and preci-
sion are critical, the EfficientLPT algorithm combines RL with
prior policy guidance to handle tasks with high dimensionality
and dynamic coupling [16]. This method balances exploration
and exploitation through a novel reward function, enhancing
convergence and planning accuracy while enabling robots
to autonomously adapt to dynamic environments. J. Zhong
et al. present a hybrid algorithm that combines DRL with
inverse kinematics for collision-free path planning in welding
manipulators [17]. The method leverages DRL for navigating
high-dimensional spaces and inverse kinematics for efficiently
guiding the manipulator, improving learning speed, robustness,
and reducing computational load, making it ideal for precision-
driven industrial tasks in confined or dynamic settings.

D. Sensor based approach

Sensor-based approaches are increasingly being used to en-
hance reinforcement learning-based motion control, enabling
robots to adapt more effectively to dynamic and uncertain envi-
ronments. Z. Liu et al. propose a deep reinforcement learning-
based hybrid visual servoing (DRL-HVS) controller for au-
tonomous robotic assembly tasks. By integrating position-
based visual servoing and image-based visual servoing, the
method addresses challenges such as field of view constraints,
image local minima, and obstacle collisions. The DRL-HVS
controller, trained using the DDPG algorithm in a simulated
environment, can be quickly deployed in real-world systems.
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An adaptive exploration strategy (AES) further improves train-
ing efficiency by dynamically adjusting exploration noise. T.
Bhuiyan et al. propose a DRL approach for industrial robot
path planning using distance sensors for real-time obstacle
detection. Virtual laser sensors provide 360-degree obstacle
detection, enabling the DRL agent to adjust its path as ob-
stacles appear. Trained using the proximal policy optimization
(PPO) algorithm in randomized 3D environments, the DRL
agent outperforms traditional planners by generating shorter,
faster paths and handling dynamic obstacles more effectively,
making it ideal for precision-driven industrial applications.

IV. CoNcLUSIONS

The integration of reinforcement learning into motion plan-
ning has shown significant promise in advancing industrial
robotics, particularly within smart industry. While traditional
approaches can be effective, they often struggle with the
computational complexity and adaptability required in dy-
namic and unpredictable environments. In contrast, RL offers
flexible and robust solutions, enabling real-time adaptation and
optimization in complex scenarios. This paper has reviewed
the limitations of classical algorithms and highlighted how RL
is enhancing performance, integrating with existing methods,
extending its application to new domains, and incorporating
sensor-based approaches. The integration of RL into robot
motion planning marks a significant step toward achieving
the flexibility, precision, and efficiency required by smart
industry, positioning RL as a central technology in the future
of autonomous systems within complex industrial landscapes.
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