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Abstract—This study investigates visual information processing
and its integration with semantic memory with a hierarchical
predictive coding with reservoir computing model. The model
explores how visual elements like color and shape interact with
semantic memory, focusing on the reverse Stroop effect. The
model processes images of gendered toilet symbols, demonstrat-
ing that East Asian models, which use color cues for gender
identification, exhibit quicker recognition than other models. The
perception is accurate for images with consistent color and shape
information but inaccurate for images with conflicting color and
shape information. The results illustrate that the model effectively
simulates the reverse Stroop effect, revealing insights into visual
and semantic memory interactions.

Index Terms—reservoir computing, predictive coding, model-
ing cognitive process

I. INTRODUCTION

Animals process sensory information from the external
environment and recognize it. There are five types of sensory
information: touch, taste, smell, hearing, and vision [1]. In the
case of human beings, visual information dominates more than
80% of all the sensory information for recognition [2], which
indicates that visual information is one of the most critical
factors in recognition. Recognition requires integrating and
unifying the sensory information with memories stored in the
medial temporal lobe [3]. The viewpoint of contents classifies
memory into declarative and non-declarative memories [1].
Episodic and semantic memories belong to the former, while
the latter includes procedural memory and other types of mem-
ories. Investigating the mechanisms of sensory information
processing and binding it with memories is meaningful to
understanding the recognition process.

Reservoir computing (RC) is a computational framework
representing approximately dynamical systems with a fixed
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reservoir and plastic readout [4]. Compared with a deep
learning framework, RC only modifies the weights of readout
connections, so its computational costs in learning are much
lower. Additionally, a reservoir does not need to be adaptively
tuned differently from deep neural networks, and then several
physical systems are applicable as a reservoir [5]. Due to
such advantages, RC is paid much attention to and is widely
studied. Some studies employ RC as a model of the brain. For
instance, RC can generate multiple patterns via the first-order
reduced and controlled error (FORCE) learning algorithm [6].
A multi-modal model consisting of predictive coding with
RC (PCRC) accounts for visual and auditory information and
their bindings through the task of associating corresponding
handwritten images from spoken digits [7].

Following the above investigations, using a hierarchical
PCRC model, this paper will study visual information pro-
cessing and binding it with semantic memory stored in the
medial temporal lobe through the reverse Stroop effect as an
example of this process. Therefore, we will focus on the colors
and shapes of visual information and the gender concept of
semantic memory.

II. MATERIALS AND METHODS

A. Stroop effect and reverse Stroop effect

Stroop, an American psychologist, reported a phenomenon
in his psychological experiment [8]. In his experiment, partici-
pants should answer the names of colors printed in incongruent
ink colors. For instance, the word “blue” was printed with
green ink. Then, the participants received an inquiry about
the actual color of the word or ink rather than the word
written by the characters. As a result, the participants needed
to answer the question longer than under the condition where
the consistent ink color printed the word. In this phenomenon,
called the Stroop effect, the word involving the information
interferes with the information about the color. The opposite
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(a) Normal images (b) Abnormal images

Fig. 1: Examples of toilet symbols as visual information.

direction of the interference is the reverse Stroop effect [9].
For instance, it takes a longer time to recognize the gender
implied in toilet symbols like Fig. 1(b) since toilet symbols
like Fig. 1(a) are common or familiar to East Asian people.
People in the US and Europe, where there is no use of color
for the distinction between males and females, do not exhibit
this trend.

B. Hierarchical predictive cording model with reservoir com-
puting

In this paper, we constructed a multimodal model of PCRC
to study how visual information is processed in the visual
cortex and binds with semantic memory in the medial temporal
lobe (Fig. 2) [10]. The network architecture is roughly the
basis of the physiological findings [1]. In brief, the model
consists of three PCRCs. Two of the three PCRCs, color
and shape areas assumed as the thin and pale stripe in
V2, independently process colors and shapes in the visual
information of images, and the other one, integration area
assumed as the higher visual cortices and the medial temporal
lobe, integrates and unifies the information from the two
downstream PCRCs and the gender concept implied in the
visual information and feeds back the processed stuff to the
two downstream PCRCs. Neurons in the shape and integration
areas are homogeneous, while the color area involves color-
selective neurons responding to reddish, greenish, and blueish
colors, respectively [11].

The color and shape areas learn the corresponding infor-
mation in the learning phase. The integration area learns the
integrated information of the two downstream areas and the
gender concept of the visual information. The FORCE learning
algorithm updates the synaptic weights of output connections
in all the parts of the PCRCs. After learning, we stopped giving
the gender information to the integration area and removed
the path of the error feedback to the integration area. The
model then predicts the corresponding gender of the visual
information only from its colors and shapes in the test phase.

An input to the model is an image with N × M pixels.
The preprocessing decomposes the color and shape elements
from the image. The pixel values in the RGB coordinate map
to the CIE coordinate [12], and then its origin shifts to the
white. The polar coordinate format of the color of each pixel
in the shifted CIE coordinate allows us to express the color
and its strength with the phase and amplitude. The phase
ranges in [θM, θO), [θO, θC), [θC, θM), where θM, θO, and θC
are the phases of Magenta, Orive, and Cyan, correspond to
reddish, greenish, and blueish, respectively. The three colors
in the RGB space locate at (0.5, 0, 0.5), (0.5, 0.5, 0), and

Fig. 2: Schematic of PCRC model.

(0, 0.5, 0.5), respectively. We assumed the total values of
the amplitudes in every phase range as the input to the
color-selective neurons. The shape element of the gray-scaled
input image filtered by the Gabor filter [13] is flattened and
transformed to a vector with NM dimension. The Gabor
filterings with the angles every π/6 from 0 to 5π/6 radians
acting as direction-selective neurons result in the six filtered
images. Each pixel is the mean value of three images randomly
selected from the six filtered images before being flattened.
Aligning all the vectors for the images makes a matrix with
NM × n where n is the number of all the images given to
the model in the learning phase. t-SNE reduces the dimension
of the matrix to 3 × n, where each column in the matrix is
a vector corresponding to each image [14]. We applied the
vector as an input to the neurons in the shape area. An input
to the neurons in the integration area is a 2-dimensional one-
hot vector indicating the gender: (1, 0)⊤ and (0, 1)⊤ for the
male and female, respectively, in addition to the input from
the two downstream areas.

C. Input data sets

To investigate visual information processing and its binding
with semantic memory through the reverse Stroop effect, we
collected 100 images of toilet symbols illustrating a pictogram
of the male or female on the internet. Half of them were
male, and the others were female. The design of the collected
images had the typically observed colorings in some East
Asian countries, especially Japan: blueish for the male and
reddish for the female (Fig. 1(a)). The corresponding color to
the gender filled the inside or outside of the pictograms, and
the other side was white. We called the images the normals.
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Fig. 3: An example of the gender perception in the hierarchical PCRC model to an image of a male pictogram. (a) The Western
and (b) the East Asian types. In each panel, the defined gender of a given image, which corresponds to the shape indicating
gender (upper), the model perceptions for a normal image (middle) and for an abnormal image (bottom). The presentation of
an image is for the first 500 steps. Because processing in the shape area delays 250 steps, the integration area only process
the information from the color area in the first 250 steps, the information from both color and shape areas in the second 250
steps, and then only the information from the shape area in the third 250 steps.

From the normals, we created the abnormals by exchanging the
color corresponding to the gender: blueish for the female and
reddish for the male (Fig. 1(b)). In addition, the binarization
of the normals allowed us to obtain black-and-white toilet
symbols.

D. Protocols in learning and test phases

We examined two types of models: the Western and East
Asian types. In the learning phase, the inputs to these two
types of models are different. Learning the different inputs
reflects differences in environments or cultures between the
countries. Inputs to the Western type in the learning phase are
the black-and-white images of toilet symbols since there is
no use of color to distinguish males and females. In contrast,
the East Asian type learns the normals like Fig. 1(a) that are
common or familiar in these countries. The FORCE learning
independently updates the output connections in the color and
shape areas to reduce the errors between the preprocessed
inputs and the outputs in both model types. After this inde-
pendent learning of the two downstream areas, the integration
area learns the inputs from the two downstream areas and the
gender of the visual information. Because of the study of the
reverse Stroop effect, we defined the gender corresponding to
the shape information of the pictograms represented by the
one-hot vector as a teacher signal. In a learning protocol, the
integration area learns the color and the gender, and then the
shape and the gender.

In the test phase, we presented the normal and abnormal
images to the model and observed the performance of the
gender prediction. The processing in the shape area follows
the one in the color area [15]. The shape area starts processing
250-steps after the color area from the physiological insight.
Since the model outputs a vector y(G) ∈ R2 as the predicted
gender of images, we defined the male for y

(G)
1 > y

(G)
2 and

the female otherwise.

III. RESULTS

The Western type exhibits invariant perception for an image
presentation (Fig. 3(a)). The model perception matches per-
fectly with the defined gender of the given image. Additionally,
the model perception does not depend on whether a given
image is normal or abnormal, which indicates that color
information in an image does not affect the gender perception
of a given image. Then, the Western type of the model
only utilizes the shape information for the gender perception
because the given images for its learning are black-and-white.

The perception in the East Asian type is consistent with
that in the Western type for the other countries for the normal
(Fig. 3(b) middle). The East Asian type gets the gender per-
ception about 240-steps earlier than the other country model
(Fig. 3(a) and (b) middle). This is due to the use of the color
information of the given image for the perception. Contrarily,
in the abnormal case, the model perception mismatches the
defined gender of the presented image at the beginning of
the image display (Fig. 3(b) bottom). Processing only color
information causes the misleading. However, processing shape
information contributes to recovering the gender perception
and brings it to the correct gender. The East Asian type takes a
long time to correctly recognize the gender of a given image so
that the East Asian type reproduces the reverse Stroop effect.
These facts indicate that the East Asian type of the model
recognizes the gender implied by the visual information with
both color and shape elements in the visual information.

IV. CONCLUSIONS

In this study, we proposed a multi-modal predictive coding
model with reservoir computing to study bindings of semantic
memory with visual information via the reverse Stroop effect.
As a result, the East Asian model appropriately recognizes
the genders of given images when the gender indicated by
colors confirms that of shapes in images. In contrast, the
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conflict between the gender of colors and shapes in images
forces the model to recognize the correct gender more times.
However, we have not observed the behaviors in the model
for people in other countries. These facts suggest that our
proposal quantitatively models visual information processing
and binding it with semantic memory. In other words, the
model successfully mimics the reverse Stroop effect.
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[4] W. Maass, T. Natschläger, and H. Markram, “Real-time computing
without stable states: A new framework for neural computation based
on perturbations,” Neural Computation, vol. 14, pp. 2531–2560, 2002.

[5] K. Nakajima, “Physical reservoir computing—an introductory perspec-
tive,” Japanese Journal of Applied Physics, vol. 59, 2020.

[6] D. Sussillo and L. F. Abbott, “Generating coherent patterns of activity
from chaotic neural networks,” Neuron, vol. 63, pp. 544–557, 2009.

[7] Y. Yonemura and Y. Katori, “Network model of predictive coding based
on reservoir computingm for multi-modal processing of visual and
auditory signals,” Nonlinear Theory and Its Applications, IEICE, vol. 12,
pp. 143–156, 2021.

[8] J. R. Stroop, “Studies of interference in serial verbal reactions,” Journal
of Experimental Psychology, vol. 18, 1935.

[9] F. H. Durgin, “The reverse Stroop effect,” Psychonomic Bulletin and
Review, vol. 7, 2000.

[10] H. Terakawa, H. Kato, Y. Yonemura, and Y. Katori, “Analysis of predic-
tive coding model with hierarchical reservoir computing for modeling
Stroop effects,” Proceedings - International SoC Design Conference
2023, ISOCC 2023, 2023.

[11] H. Lim, Y. Wang, Y. Xiao, M. Hu, and D. J. Felleman, “Organization of
hue selectivity in macaque V2 thin stripes,” Journal of Neurophysiology,
vol. 102, 2009.

[12] T. Smith and J. Guild, “The C.I.E. colorimetric standards and their use,”
Transactions of the Optical Society, vol. 33, 1931.

[13] D. Gabor, “Theory of communication,” Journal of the Institution of
Electrical Engineers - Part I: General, vol. 94, 1947.

[14] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” Journal
of Machine Learning Research, vol. 9, 2008.

[15] M. Ichikawa, “Temporal illusions in visual perception,” Kougaku (in
Japanese), vol. 39, no. 2, pp. 82–88, 2010.

1828


