
Parallel Nested-Layer Particle Swarm Optimization
for bifurcation parameter detection

Tomo Hasegawa
Department of Electric and Electronic Engineering,

Tokyo University of Technology
Hachioji Tokyo Japan
0000-0003-1242-8058

Haruna Matsushita
Department of Electronics and Information Engineering,

Kagawa University
Takamatsu Kagawa Japan

0000-0002-7850-5119

Takuji Kousaka
Department of Electrical and Electronic Engineering,

Chukyo University
Nagoya Aichi Japan

0000-0002-6368-4089

Hiroaki Kurokawa
Department of Electric and Electronic Engineering,

Tokyo University of Technology
Hachioji Tokyo Japan
0000-0003-2340-1424

Abstract—Nested-Layer Particle Swarm Optimization
(NLPSO) has been proposed to detect bifurcation parameters in
nonlinear dynamical systems. Bifurcation parameter detection by
NLPSO is a simple method because it does not require precise
initialization and does not require differential information
from the dynamical system. NLPSO’s disadvantage is its high
computational complexity. We have proposed parallel NLPSO,
which solves this problem using parallel computation and is
implemented as a software library. The parallelization is based
on optimizing the NLPSO algorithm for execution on multi-core
CPUs. In this paper, we show the efficiency of Parallel NLPSO
for computational time.

Index Terms—bifurcation parameters, parallel processing, Par-
ticle swarm optimization,

I. INTRODUCTION

Many of the phenomena in the world can be described
by dynamical systems. Bifurcation analysis is essential in
analyzing various phenomena that dynamical systems can
describe. The derivation of bifurcation points is formulated as
an optimization problem, and methods based on the Newton-
Raphson method have been used in conventional studies [1]–
[3]. In contrast, several methods based on Particle Swarm
Optimization (PSO) [4] have been proposed [5]–[7]. PSO is
a versatile optimization method that can be easily applied
to various problems due to the simplicity of the algorithm
processes, and it does not require gradient information for the
objective function. NestedLayer Particle Swarm Optimization
(NLPSO) [8]–[11] is a bifurcation parameter search method
using PSO. The NLPSO algorithm [8]–[11] is a nested com-
bination of two PSOs, one to derive the periodic points for
the bifurcation parameter derivation process and the other to
derive the bifurcation parameters corresponding to the periodic
points. Bifurcation parameter search with NLPSO has the
advantage that precise initial value setting is not required.

On the other hand, high computational complexity is a well-
known problem of the NLPSO. To reduce the computation
time, which has been a problem of NLPSO, we have proposed

the parallel NLPSO and developed a software library that
works by inputting only the equations describing the system,
the number of cycles in which the bifurcation occurs, and
the search range [12]. The software can search bifurcation
parameters for period-doubling bifurcation and saddle-node
bifurcation in discrete-time and continuous-time dynamical
systems. This paper presents an overview of parallel NLPSO
and its effectiveness.

II. NESTED-LAYER PSO

A dynamical system can be classified into two types:
discrete-time dynamical systems, which define time changes
discretely, and continuous-time dynamical systems, which
define time changes continuously. These are respectively de-
scribed by the following difference equation and differential
equation:

x(k + 1) = f(x(k), λ) (1)
dx(t)

dt
= g(t, x(t), λ) (2)

Here, λ is a parameter in the dynamical system.
In a discrete dynamical system, if the n-fold composition

of an arbitrary map f is denoted as fn, then a point xp that
satisfies the following equation with a parameter λ is called
an n-periodic point:

fn(xp, λ) = xp (3)

Suppose Dfn(xp, λ) is the Jacobian matrix of fn at xp, it
gives the characteristic equation as follows:

det(Dfn(xp, λ)− µIN ) = 0 (4)

Here, when the characteristic multiplier µ = −1, a period-
doubling bifurcation occurs, and when µ = 1, a saddle-
node bifurcation or pitchfork bifurcation occurs. Therefore,
the search for bifurcation parameters can be formulated as a
mathematical optimization problem, where the goal is to find
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Fig. 1. Schematic of NLPSO: Each particle of PSObif calls PSOpp in each
calculation to update its position and velocity.

the periodic point xp and parameter λ that satisfy Equations
3 and 4 under the conditions µ = −1 or µ = 1.

To solve this problem, two objective functions, Fbif(zbif) and
Fpp(zpp), are defined with zbif and zpp as the decision variables:

Fbif(xp, zbif) = (5)
{
|det(Dfn(xp, zbif)− µIN )| if Fpp(xp, zbif) < Cpp,

∞ otherwise.

Fpp(zpp, λ) = ‖fn(zpp, λ)− zpp‖ (6)

Here, zbif corresponds to the parameters of the dynamical
system, i.e., λ, and zpp corresponds to the n-periodic point.

NLPSO solves this optimization problem by executing two
PSOs in a nested configuration. The schematic is shown in
Fig. 1. The PSO that minimizes each objective function is
referred to as PSObif and PSOpp, respectively. In NLPSO,
each time a particle of PSObif is updated, PSOpp is called
to proceed with the computation. It should be noted that
PSO is an algorithm in which multiple particles explore the
solution space. For continuous dynamical systems, bifurcation
parameters can be searched by applying a similar method used
in discrete dynamical systems to the Poincaré map. For further
details, please refer to [8]–[11], [13].

III. PARALLEL NLPSO

As discussed in the previous section, NLPSO is an algo-
rithm that requires a large amount of computation due to its
nested structure. To address this problem, we apply parallel
computing to NLPSO. While GPU-based methods are well-
known, managing GPU-equipped systems can be complex for
non-expert users. Therefore, we focus on parallelization that
can be executed on standard PCs with up to 16-core shared-
memory multicore CPUs.

In shared-memory multicore CPU parallelization, the over-
head of fork-join operations often reduces performance im-
provements. Here, fork-join refers to the procedure of dis-
tributing tasks across threads and then merging the results.
Given that we are not targeting many cores, i.e., we assume

Fig. 2. Concept of naive Parallel NLPSO. Synchronous updating by each
particle is required to implement the PSO algorithm strictly.

to use up to 16 cores at most, we parallelize by assigning the
computation of each particle in PSObif to a separate thread.
This means parallelization is limited to the number of particles
in PSObif .

Generally, the PSO requires synchronous updating by each
particle because each particle updates its position and velocity
and then updates the global best solution for the entire
particle swarm. If the PSO algorithm is implemented strictly,
this would require thread synchronization, as shown in Fig.
2, leading to frequent fork-join overhead, thereby reducing
the effectiveness of parallelization. Additionally, unnecessary
waiting time for synchronization among threads further dimin-
ishes the parallelization effect.

To solve these issues, we proposed an asynchronous PSO
update method, as shown in Fig. 3. Although each particle may
not always refer to the most recent best solution, our numerical
experimental validation has demonstrated that this relaxation
of conditions has little negative effect on the solution search.

IV. EXAMPLES

We implemented an asynchronous update parallel NLPSO
using multi-threading with OpenMP. Also, the differentiation
required to obtain the Jacobian matrix was automated using
numerical differentiation. We performed bifurcation parameter
searches on several discrete-time nonlinear dynamical systems.
The results for computation times are shown in Table I. Note
that NNS [17] represents a higher-dimensional system with
increased computational complexity. The CPUs used were
Intel’s 12900K (16 cores), 10900K (10 cores), and 1065G7
(4 cores). While the effect of parallelization varies with the
number of cores, computation times were reduced in all cases.
The number of particles for PSObif was set to 30. Although the
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TABLE I
COMPARISON OF COMPUTATIONAL TIMES BETWEEN NLPSO AND PARALLEL NLPSO ON THE DISCRETE-TIME DYNAMICAL SYSTEM. PARALLEL

NLPSO IS EXECUTED ON DIFFERENT CPUS

Serial NLPSO Parallel NLPSO
Target time [s] (12900K) time [s] (12900K) time [s] (10900K) time [s] (106567)

Hénon map
PD 5 3.137 0.251 0.449 0.727
PD 6 9.743 0.499 0.890 2.257
SN 5 19.469 0.993 1.896 9.435
SN 6 38.073 2.096 3.882 21.306

NNS
SN 64 8029.425 649.24 1461.293 5388.772
SN 65 9681.976 749.985 1389.778 5557.712

Fig. 3. Concept of proposed Parallel NLPSO. Asynchronous updates are
applied.

number of CPU cores does not always match the number of
threads, the appropriate bifurcation parameters were obtained.

TABLE II
COMPARISON OF COMPUTATIONAL TIMES BETWEEN NLPSO AND
PNLPSO ON THE CONTINUOUS-TIME DYNAMICAL SYSTEMS.THE

PROGRAM IS EXECUTED BY INTEL 12900K.

Serial NLPSO Parallel NLPSO
Target time [s] time [s]

(non-autonomous) [15] PD 1 5025.23 1006.667
SN 1 48915.951 7153.806

Chen’s equation [16] PD 1 78544.968 14913.277
PF 1 184663.846 41495.298

Additionally, we developed a software library that sim-
plifies the use of the proposed PNLPSO. The library was
implemented using RUST. We executed bifurcation parameter
searches using this software library on several continuous-
time nonlinear dynamical systems. The results for computation
times are shown in Table II, where only the results using
Intel’s 12900K (16 cores) are presented. These results show
the efficiency of parallelization. As a result of the bifurca-
tion parameter detection using our parallelized algorithm, we
obtained a set of bifurcation parameters, as shown in Fig. 4.
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表 5.3 使用した CPUのスペック 

 

 
Fig. 5.4 従来法 (a, b) と提案法 (c, d) それぞれで得られた分岐図 

 
  
 

 

連続時間力学系の解析において，並列計算による高速

化効果は離散時間力学系よりも限定的であったものの，

依然として並列 NLPSO が有効な高速化手法として機
能することを確かめた．今後の研究では，連続時間力

学系の分岐点探索における並列化の効果を妨げる原因

を特定して効率化と高速化を図るとともに，どのよう

な系に対して並列計算がどの程度高速化に寄与するか

を定量的に評価することが必要である．  
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表 1. 分岐点探索 NLPSO の実行時間  

Targets 
Elapsed seconds 

Serial Parallel 

Eq. (10) PD5 

SN5 
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Eq. (11) PD1 

SN1 
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7153.806 

Eq. (12) PD1 
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184663.846 
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(a) 離散系 (Eq.10)      (b) 非自律系 (Eq.11) 

 

(c) 自律系 (Eq.12) 
図 2. 並列 NLPSO によって導出された分岐図  
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(a) Hénon map (b) NNS

(c) non-autonomous (d) Chen’s equation
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Fig. 4. Results of the bifurcation parameter detection using our parallelized
algorithm.

V. CONCLUSION

In this paper, we describe an overview of parallel NLPSO
and its implementation and demonstrate the improved com-
putation speed when applied to several dynamical systems.
We developed highly versatile software that operates on a
general-purpose computer and performs bifurcation parameter
searches using only the system definition, period number, and
search range. This enables bifurcation parameter searches to
be executed without special knowledge of bifurcation analysis
or parallel computing.

As mentioned in Section III, utilizing GPUs is an effective
means of achieving parallel computing. In our previous stud-
ies, we have parallelized the NLPSO algorithm using GPU
[18]. In GPU-based parallelization, all particles of PSOpp are
computed in parallel simultaneously, and the positions and
velocities of both PSOpp and PSObif particles are updated using
these results. At this point, the particles of PSOpp and PSObif
are updated in strict synchronization. Although there are pos-
sibilities for improvement in the algorithm when considering
the efficiency of GPU resource utilization and parallelism,
applying this approach to several nonlinear dynamical systems

1831



has demonstrated a successful acceleration effect. Here, the
more complex the system being analyzed, the greater the
acceleration effect achieved through parallelization.

In contrast, the shared-memory multicore CPU implemen-
tation of PNLPSO presented in this paper has shown rel-
atively higher acceleration effects for simpler systems with
shorter computation times, unlike the case with GPU-based
parallelization. Thus, it is suggested that parallelization using
GPUs and parallelization using multicore CPUs show different
characteristics due to the differences in their respective algo-
rithms. Providing a precise explanation of these characteristic
differences remains a challenge for future work.

Furthermore, while a direct comparison is difficult due to
differences in the required computing systems and compilers,
in general, GPU-based parallelization tends to perform faster.
However, as demonstrated in this paper, the acceleration
achieved with PNLPSO using multicore CPUs is sufficiently
effective. Considering that, as discussed in Section III, this
method does not require relatively expensive devices such as
GPUs or complicated system management, it proves to be a
highly practical approach.
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