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Abstract— In future, humans live with autonomous robot, 
and cooperate with it. In this study an autonomous robot and a 
human were asked to cooperate in an exploration task to reach 
a goal in a large-scale maze. While they were doing a task, 
electroencephalogram (EEG) was measured from the human. 
The human was asked to choose the direction of travel at 
intersections, and 30% of the choose, the robot traveled in a 
different direction from that specified by the human. Error-
related potentials (ErrPs) occurred in the human brain at the 
time, and that was consistent with that reported in the previous 
studies. Time-frequency analysis of EEG revealed an increase in 
θ-frequency power and a decrease in β-frequency power. Some 
participants felt "bored" during the task. As if to reflect this, in 
the second half of the task, the amplitude of ErrPs decreased 
and θ-frequency power also decreased. When the ErrPs of the 
first and second halves were discriminated using a convolutional 
neural network, the accuracy rate of the correct responses 
decreased in the second half compared to the first half. These 
results suggest that ErrP changes with boredom, and there is a 
possibility to detect the boredom using EEG. 
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I. INTRODUCTION 
The number of elderly people is expected to continue to 

increase in the future of Japan. The quality of life (QOL) of 
bedridden elderly people is greatly reduced due to their 
monotonous daily life. To improve their QOL’s, we have 
proposed an exploration system outside of the room 
cooperatively with an autonomous robot controlled remotely 
[1]. The system uses brain-machine interface (BMI) 
technology to operate the robot for the disabled person. 
However, the robot may operate against the human's will due 
to errors or noise induced in the system. Human’s brain 
induces one of the electroencephalogram Error-related 
potentials (ErrPs) when they have an error by themselves or 
when some agents and robots commit the errors. ErrPs can be 
originated from the anterior cingulate cortex (ACC) based on 
signal source estimation [3]. If the system malfunctions can be 
detected using ErrP induced in humans, it is expected that the 
system performance can be improved through the reinforce 
learning [4, 5]. Based on this idea, in a previous study [1], we 
conducted a search task in a simulated small maze (12m x 
16m) with seven three-way intersections, using a teleoperable 
autonomous robot. During the task, when the robot 
approached an intersection in the maze, the user instructed the 
robot which direction to go, but the robot sometimes did not 

follow the instructions. When the robot did not follow the 
instructions, ErrP was observed from the participants. 
However, the maze in the previous study was so small and had 
only intersections with three paths. If the system is to be put 
into practical use, it needs to be tested in a more complex and 
larger maze. There is also a possibility that participants may 
become bored with the task of the larger maze, because they 
had to instruct the robot how to go many times. It has not yet 
been clarified how ErrP changes during such a boring situation. 
In this study, we aimed to clarify whether ErrP occurs during 
human-robot cooperative maze search task in a large-scale 
maze, if so, what kind of EEG features are measured, and how 
ErrP changes when the participants feel boredom. We also 
examined Convolutional Neural Networks (CNN) for 
detecting ErrPs. 

II.  

This study was approved by the Committee on 
Experiments on Human Subjects of the Kyushu Institute of 
Technology (Approval No. 23-06). Four male graduate 
students (age: 22.8 ± 0.83 (mean ± SD) years) participated in 
the experiment. Consent was obtained from all participants to 
participate in the experiment. 

In the experiment, the participants and the robot 
cooperated to explore a maze created in the Gazebo simulator 
from the start to the goal. The maze was presented in a PC 
monitor (Horizontal visual angle: 54.9 deg, and vertical visual 
angle: 32.9 deg) in front of a participant. The maze was 
approximately 25 m × 25 m with 32 to 33 intersections 
including 24 to 25 three-way and 8 four-way intersections, and 
was explored the maze for approximately 30 minutes. In the 
straight path, the robot ran autonomously, but at the 
intersections, it stopped and asked the participants for the 
moving direction. The participants instructed the direction 
using gaming pad. The robot usually followed the instruction, 
however, the robot was programmed to go in a different 
direction from that of the participant's instruction a the rate of 
30%. This simulates the robot's erroneous behavior. In 
addition, two types of search maze tasks were prepared. One 
was with a mini-map and the other as without a mini-map. In 
the case of the maze with mini-map, the current position and 
the goal position were known to the participants. 

After the task, the participants had to answer the 
Multidimensional State Boredom Scale (MSBS) [6]. The 
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Scale  was used to determine whether participants became 
bored during the task. 

EEG was measured from the participants during the maze 
search . EEG was based on the extended 10-20 method 
and was measured with silver plate electrodes attached to 
scalp positions Fz, F3, F4, FCz, Cz, C3, and Pz. EEG signals 
were low-pass filtered at 10 Hz for time-domain analysis and 
30 Hz for frequency-domain analysis, with blink components 
removed by EEGLAB [7]. The EEG epochs from -500 to 1000 
milliseconds (the start of robot motion was set at 0 
millisecond) were then extracted as the EEG epochs. The EEG 
epochs in which the robot moved in the same direction as 
instructed by the participant were defined as Correct epochs, 
and those in which the robot moved in a different direction 
contrary to the instruction were defined as Error epochs. In the 
feature extraction analysis, we performed an additive average 
for each epoch in the time domain and the time-frequency 
domain to examine the EEG features specific to the Error 
epoch. Wavelet analysis was used for the time-frequency 
domain analysis, in which the Morlet wavelet function was 
used. 

For the detection of error epochs in a single trial using 
CNN, a CNN was trained with time-domain and 
time/frequency-domain features of an epoch in single trials as 
input signals for Error and Correct epochs. The input signals 
were 7*100 (electrode x time) dimensions in the time domain 
and 30*100 (frequency x time) dimensions with one electrode 
in the time-frequency domain. Since both were compared, 
they were adjusted to be of equivalent dimensions. The layer 
structure of CNN was kept the same in the analyses of time 
and time/frequency domains. Fig. 1 shows the structure of the 
CNN for time-domain signals. The Relu function was used for 
the activation function of the units in the convolutional layer, 
and the Sigmoid function was used for the output units of the 
all-connected layer. Adam was used to optimize the network, 
and the network was trained 100 iteration times. The accuracy 
rate was obtained by leave-one- out cross-validation method. 

 
Fig. 1. The structure of time/frequency domain CNN. 

 

III. RESULTS AND DISCUSSIONS 

A. ErrP in cooperative exploration by humans and robots in 
large-scale maze 

A positive potential at 200 ms, a negative potential at 500 
ms, and a positive potential at 600 ms were time domain 
features with significant differences between Error/Correct 
epochs (Fig. 2). Since these potentials occurred at latencies 
close to ErrP of previous studies [2], they could be considered 
ErrP. There are several kinds of ErrP. The measured ErrP  can 
correspond to the interaction ErrP, because it can be recorded 
in the task where the cursor moved in the different direction 
which the participants pointed out [8]. The latencies were 
longer than in the small-scale maze exploration [1] and the 

cursor movement task [2]. This may be due to the increased 
complexity of the Error information processing in the large-
scale maze task intersection in this study, as the number of 
options for correcting the direction of movement increased 
compared to that in the previous study. The obtained results 
were consistent with the result that latency was longer for 
more complex tasks [9]. 

 
Fig. 2. Examples of time-domain ErrP features at front-

central FCz. The red and blue lines are the EEGs for the Error 
and Correct epochs, respectively. The green line is the 
difference between them. The upper black bars indicate that 
the time when there are the significant differences between the 
Error and Correct epochs (p < 0.05). The time zero indicates 
the onset of the robot moving. 

 

 Next, we examined the time-frequency features of ErrP. In 
the front-central region, there was an increase in θ power from 
200 to 1000 ms (Fig. 3A, black rectangle) and a decrease in β 
power from 600 to 900 msec (white rectangle). The time-
frequency features of ErrP caused by the robot malfunction 
were in the θ frequency range. On the other hand, θ frequency 
powers increased from 400 to 1000 msec and β frequency 
powers also increased around 800 msec in the Correct epoch 
(Fig. 3B). θ frequency powers significantly increase from 200 
to 400 msec, and β frequency powers decreased significantly 
decreased in Error trials  (Fig. 3C and D). 
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Fig. 3. An example of time-frequency features of ErrP. 

From the top, A: the spectrogram of potential in an Error 
epoch, B: the spectrogram of potential in a Correct epoch, C: 
t-values of the averaged potentials of all participants in the 
time-frequency domain, and D: p-values, the probability of 

significance, comparing of EEGs between in Error and 
Correct epochs are shown. T-values in yellow indicate 
increased activity in Error trials, and in green, decreased 
activity in Error trials. The p-value is below 0.05. The closer 
the p-value is to 0, the warmer the color is. 

 

B. The detection of Error Epochs and Boring. 
The detection of the Error epoch by CNN had an average 

accuracy rate of 82% for time-domain features and 86% for 
frequency-domain features (Fig. 4). This is higher than those 
in the smaller-scale maze exploration [1], and the robot 
malfunction detection was possible even in long-time 
exploration of larger-scale mazes. The accuracy rate is 
comparable with the other reports of the interactive ErrP [10]. 
Error epoch detection using time-frequency-domain features 
had a higher accurate response than time-domain features. 
This may be because the appearance of powers in the θ and β 
bands around 800 msec of the Error epoch showed less 
variation than the time-domain features. In the larger maze, 
the number of epochs were also larger. Therefore, the number 
of the training data was larger, and the accuracy rate can be 
higher.  

Based on the results of this study, we believe that it is 
possible to learn the user's preferred route using ErrP in a 
remote robot exploration system. In the unexplored area, the 
robot can construct a map using Simultaneous Localization 
and Mapping  under the instruction of the human, and because 
a system follows the same path in the map, it can learn the 
user's preferred path by reinforcement learning based on ErrP. 
As a result, the burden on the user can be reduced by sharing 
control between the robot and the human.  

 
Fig. 4. Percentages of the detection of Error epochs by 

CNN using time-domain features (blue bars) and time-
frequency domain features (red bars). Horizontal red dotted 
lines indicate the chance levels. “SubX-1” indicates the 
percentage of the accuracy rates for the error epochs for tasks 
with mini-map, and “SubX-2” does the percentage for tasks 
without map (X=1, 2, 3, 4). 

 

The participants do the cooperation with the robot for a 
long time, there is a possibility that they are bored. Actually 
in the exploration task of the larger maze in the present study, 
all participants except Sub3 felt boredom with the mini-
mapped task, but none with the unmapped task. Sub3 did not 

A 

B 
 

C 
 

D 
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become bored in both mini-mapped and unmapped tasks. 
Boredom would be induced in the latter half of the task. ErrP 
was compared between the first half and the second half of the 
task in which boredom occurred. The results showed that 
negative potential of ErrP around 500 msec was smaller in the 
second half of the task than that in the first half (Fig. 5). In the 
time-frequency domain, θ frequency power from 500 to 1000 
msec decreased (Fig. 6). 

Those time-domain and time-frequency domain features 
were input to the CNN and subjected to discriminative 
learning in four classes: ErrPs before and after the boredom, 
and Correct EEG before and after the boredom. The results 
showed that the percentage of accuracy rate was higher when 
time-frequency features were used than when time-domain 
features were used. Using the time-domain features, there was 
no difference in the accuracy rates between with and without 
mini-maps (averaged accuracy rates with and without mini-
maps were 27% and 26%, respectively), but the accuracy rates 
using the time-frequency features was higher with mini-map 
task than that without mini-maps (averaged accuracy rates 
with and without mini-maps were 35% and 27%, respectively). 
Thus, the time-frequency feature of ErrP may be better at 
detecting the participant boredom. Actually measuring EEGs, 
you can detect the boredom in the exploration task of the large 
maze with the robot. 

 

 

 
Fig. 5. ErrP in the first half (A) and the second half (B) of 

the mapped task, with smaller ErrP around 400 msec (yellow 
shaded rectangle areas). 

 

 
Fig. 6. Spectrogram of ErrPs before (A) and after (B) the 

induced boredom in the mapped task. Signal measured at FCz. 
Theta frequency powers between 500 and 1000 msec were 
smaller after the induction of boredom. 

 

 
Fig. 7. Results of detecting boredom using ErrP. Fig. A 

shows the accuracy rate using the time domain as the input 

A 
 

B 
 

A 
 

B 
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feature and the bottom Fig. B shows the time-frequency 
feature. Dark and light colored bars are the results of the with-
map and without-map tasks, respectively. 

 

IV. CONCLUSIONS 
During the human-robot cooperative exploration for a 

large-scale maze, it was found that the EEG produced by the 
robot's malfunction had ErrP features of positive potentials at 
400 msec, negative potentials at 500 msec, and positive 
potentials at 700 msec. Theta frequency band power from 400 
to 800 msec and beta frequency band power around 800 msec 
were decreased. Compared to ErrP reported in the small-scale 
maze in the previous study, ErrP found in the large-scale maze 
in this study revealed long latency. 

In the detection of the robot errors using CNN, we 
achieved an accuracy rate of more than 80%, and the rate was 
better for time-frequency-domain features than for time-
domain features. The θ power increased and β power 
decreased in the time-frequency domain were considered 
stable features for the higher accuracy rate. The rate was also 
higher than that reported in the smaller maze in the previous 
study. That is because the number of the training data will be 
larger in the large-maze task. 

The participant also felt bored during the exploration task 
with a mini-map, and when bored, the component of ErrP at a 
latency of about 500 msec became smaller, and the θ power 
between 500 and 1000 msec decreased. Using this EEG 
feature, the accuracy rate for the induced boredom was higher 
for the time-frequency feature than for the time-domain 
feature. Therefore, the time-frequency features of ErrP may be 
useful for detecting robot errors and task performers' boredom. 

 

V. FUTUIRE WORK 

In this experiment, we conducted a exploration task using 
a robot in the simulation space. In the future, we would like to 
verify whether similar ErrP features can be measured from the 
participants when using actual robots and in the actual 
environment. In this study, we also conducted a boredom 
questionnaire by asking participants to recall after the offset 
of all exploration sessions. In this case, the time of occurrence 
of boredom can only be roughly captured. Therefore, we 

would like to investigate the effect of boredom on ErrP in 
more detail by using a method in which participants report 
sequentially when they feel bored. 
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