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Abstract—In the data analytics based IoT era, reliable sensor
data is essential for maintaining the integrity and effectiveness
of IoT applications. The reliability of sensor data can be
compromised due to faults that that occur in the sensors and
this faulty sensor signals can lead to performance degradation in
IoT enabled systems. This study investigates a transfer learning
method augmented by a domain adaptation technique for sensor
fault classification. The domain adaptation technique allows the
classifier model to accurately identify two types of sensor faults,
drift and bias fault, in a target sensor node with an unlabeled
dataset. We trained an ANN classifier using a semi-supervised
approach, leveraging labeled samples from the source sensor node
alongside unlabeled data from the target sensor. In the current
work, both the source and target sensors are of the same type but
are located in different locations. Results from two experiments
demonstrate that our approach achieves approximately 97%
accuracy when the target sensor is indoor and the source sensor
is outdoor. When both sensors are located outdoors, the accuracy
exceeds 99%. Other classification metrics also remain consistent.
This approach not only maximizes the use of available data but
also offers a robust solution for scenarios where obtaining labeled
data is difficult or missing.

Index Terms—sensor faults, domain adaptation, IoT, deep
learning, transfer learning

I. INTRODUCTION

In the thriving landscape of the Internet of Things (IoT),
sensor-collected data is the most significant element for a wide
array of applications, ranging from smart homes to industrial
automation [1], [2]. The significance of this data lies in its
ability to provide real-time insights, enhance operational effi-
ciencies, and drive predictive analytics, which are critical for
the seamless functioning of the overall IoT system. However,
the reliability of IoT applications is profoundly impacted by
the quality of sensor data. Imperfect sensors, which may
produce faulty data, pose a significant challenge. Faulty sensor
data can lead to incorrect decision-making, reduced system
performance, and even pose safety risks in critical applications
such as healthcare and autonomous vehicles. Typically, the

sensors used for collecting data are inexpensive, small in size,
and consume low power. In real scenarios, these sensors are
often installed in harsh and extreme locations in industrial
and outdoor environments, which increases the probability
of damage. Additionally, aging, hardware malfunctions, and
inaccurate installations can also make a sensor prone to
producing abnormal or faulty signals. Sensor faults can be
classified primarily in two categories: incipient faults and
abrupt faults [3]. Incipient faults, such as bias and drift faults,
develop slowly and are difficult to detect in their initial stages.
On the other hand, abrupt faults like stuck and spike faults are
sudden events that persist for a short amount of time.

A large number of networked sensors nowadays provide a
huge amount of data. With the ease of implementing machine
learning and deep learning models, the data-driven sensor fault
analysis approach is now widely adopted by researchers. In
this paper, we implemented an artificial neural network model
for classifying drift and bias faults in a sensor which might
have non-labelled samples. In real-world scenarios, it might
happen that one of the sensors in a network has missing labels
for its data. However, if there are similar types of sensors
in the same network with labeled fault data, it is possible
to effectively classify faults for the unlabeled sensor data by
training a neural network that incorporates both the labeled
and unlabeled data for training as discussed in [4], [5]. In
this paper, we consider a source sensor with labeled data
and a target sensor with unlabeled data. An Artificial Neural
Network (ANN) is trained with a custom loss function to
ensure good sensor fault classification performance for both
the source and target sensors. Both sensors are of the same
type and measure the same parameter, temperature. However,
two different experiments are performed. In the first case,
the source sensor is located outdoors and the target sensor is
located indoors. In the second case, both sensors are located
outdoors.
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II. RELATED WORKS

In the data-driven techniques of sensor fault classification,
the machine learning and deep learning based approaches are
mainly followed by the research community. The machine
learning algorithms generally classifies faults based on features
extracted from the original sensor recordings as demonstrated
in [6], where time domain features are utilized with support
vector machine (SVM). SVM is also in [7] with empirical
mode decomposition (EMD) extracted features. Various popu-
lar machine learning algorithms, such as K-nearest neighbors
(KNN), random forest (RF) classifiers, Gaussian Naive Bayes
(GNB), and multilayer perceptron (MLP), have been employed
in tasks related to sensor fault classification and analysis [8],
[9].

The convolutional neural network (CNN) is widely being
used for sensor fault classification and analysis. Four type of
sensor faults are classified using CNN in [10] in a structural
monitoring system, where the convolution is performed on a
stacked array of signals created from multiple sensor data.
Analysis of similar types of faults in a automated car is con-
ducted in [11], where authors suggested a multistage approach
for fault detection, classification, and isolation. A CNN 1D
architecture is suggested for fault detection and at the later
stage MLP is utilized for fault classification from several time-
frequency features. Few researchers leveraged the strength of
2D CNN in classifying sensor fault by converting the sensor
signal in to images through various approaches. Authors in
[12] converted sensor signal into gray matrix image to detect
seven fault types in a hydrogen sensor using CNN architecture.
Another CNN based sensor fault classifier is studied in [13],
where Continuous Wavelet (CWT) scalograms of seven types
of sensor faults in a aeroengine control system is used as
the input of the model. Autoencoder (AE) architectures are
also used in detecting multiple sensor fault in real sensor as
presented in [14]. Hybrid architectures like the integration
of CNN and LSTM also demonstrated good performance
in detecting bias, drift, and random faults as reported in
[15]. Apart from CNN and ANN models, recently advanced
architectures such as generative adversarial networks have also
been used in sensor fault analysis when there is an imbalanced
data distribution [16], [17].

It is observed that the majority of works in sensor fault
analysis fall under the category of supervised learning. In
this work, the concept of transfer learning approach is used
along with domain adaptation for sensor fault classification in
a target sensor having non-labeled data. The classifier model
is trained using the labeled source sensor data and the target
sensor data. Considering the nature of the data used here,
this proposed approach can be categorized as semi-supervised
approach.

III. METHODOLOGY

In this paper a publicly available sensor dataset [18] is used.
The dataset contains temperature and humidity data collected
by TinyOS-based Crossbow TelosB motes in both single-hop
and multi-hop settings. The temperature and humidity readings

are collected at an interval of 5 seconds over 6 hours. An
elaborate discussion on the dataset can be found in [19].

In our present work, temperature signal of three sensors
are considered to demonstrate the sensor fault classification
approach. In our proposed approach, we consider two sensors:
one is referred to as the source sensor and the other is target
sensor. Based on the location of the source and the target
sensor, two different scenarios are realized. In the first case,
the sensor located outside is considered as the source sensor
and the target sensor is assumed to be located in side of a room
and in the other case, both the sensors are located outside of
a house but in separate locations . It is also assumed that
the source sensor dataset has corresponding labels against the
samples whereas the target sensor data have no label assigned
to its samples.In our work, we train a single ANN model based
on the labeled source sensor dataset and non-labeled target
sensor dataset. Finally, the trained model is tested to classify
potential sensor faults on the test set of the target sensor. This
approach can be beneficial because without a labelled dataset
it is possible to classify fault in the target sensor node. A
graphical visualization of the proposed approach is presented
in Fig. 1.

Although the source and the target sensor collects the
same parameter, temperature in this case, both the sensors
are located in different physical locations which might lead
to different data distributions for the sensors. Therefore, while
using the classifier model to perform classification on target
sensor data, the model should adapt the difference between
the two dataset from the source and the target. To achieve this
a custom loss function is used during the training phase.

A. Dataset Preparation

In the context of sensor fault classification tasks, the ma-
jority of research papers create fault datasets by introducing
synthetic fault samples using defined equations for different
types of faults [9], [11], [20]. Similarly, in this work, we
created a fault dataset by altering normal sensor readings using
mathematical equations that represent certain types of faults.
Specifically, we considered two types of sensor faults: drift
fault and bias fault. Temperature readings from two outdoor
sensors and one indoor sensor are considered in this task. As
the first step in data preparation, each of the sensor readings
are segmented in non-overlapping vector of 100 data points
which is equivalent to about 8.33 seconds reading by the
sensor. Each of the segments are considered as samples of
non faulty condition. This process of segmentation provides
multiple samples from the complete duration of the sensor
recordings. However, for deep learning based fault classifica-
tion a dataset with sufficient number of samples are necessary.
Therefore to increase the number of non-faulty samples, zero
mean, low variance random signal of same length of the
segmented vector is added to the primarily created samples.
The steps listed in Algorithm 1 results a dataset, Sj contains
synthetic samples created from the available non-faulty in-
stances and Hn(0, µ) represents the zero mean random signal
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Fig. 1: Visual depiction of the sensor distribution scenario.

Algorithm 1 Creating synthetic dataset.

Input: Si : Matrix represents the segmented samples from the
sensor reading, M : The number of additional samples

Output: Sj : Dataset with increased samples
1: Initialize model parameters, θ
2: for j = 0 to M do
3: Choose a random instance from Si → Sm

4: Add zero mean, low variance random signal with Sm

5: Sj = Sm +Hn(0, µ)
6: end for
7: Dataset with increased samples, Sj

vector. Finally, concatenating Si and Sj provides the complete
non-faulty dataset.

The final step in creating the complete dataset is to cre-
ate artificial sensor fault samples from non-faulty samples.
As mentioned earlier, the drift fault and bias fault samples
are considered in this work, the artificial fault samples are
generated using the following mathematical equations of the
faults. In drift fault case, the sensor reading linearly changes
over time possibly due to external factors or change in circuit
parameters. If Sn denotes the normal signal then the drift fault
can be realized with (1).

Sdrift = Sn +Hn (0, µ) + βn (1)

Here, βn represents the drift parameter that introduces the
linear change in the sensor recording.

When the sensor output shifts to a value higher than a
regular value, the sensor is said to be affected with bias fault
and this can be mathematically represented as (2).

Sbias = Sn +Hn (0, µ) + v (2)

Here, v represents the constant bias term added to the normal
signal values. Using the same steps individual datasets for each
of the three sensors are created for implementing the fault
classification scheme using an ANN model.

B. Training the Artificial Neural Network Classifier

As described before, in this approach we focus on develop-
ing a ANN sensor fault classifier which can be used effectively
to classify the fault in a target sensor having a non-labelled
dataset. To achieve this a custom loss function is used during
the training of the model. The source and the target sensor in
this work are considered to be similar type but they located
in different locations as depicted in Fig.1. The custom loss
function reduces the domain difference between two different
datasets of source and target sensors. The custom loss function
constitutes of two parts. The first part accounts for the labeled
dataset of the source sensor, the loss is the common cross-
entropy loss used for classification problem and defined as
(3).
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s
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i ) (3)

where, N is the number of classes, and ysi,k takes a value 1 if
the actual label of the i− th sample is class k or 0 otherwise,
and p (y = k | xs

i ) denotes the model output. The second part
of the loss function provides a measurement of the domain
difference between the source and the target sensor datasets
which is defined as (4).
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where, xS
i and xT

j represent the source and target sensor
dataset, B denotes the batch size for each dataset, and M (·) is
the feature obtained from the last fully connected layer of the
ANN architecture. This part of the loss function computes the
Euclidean norm of the features returned by last fully connected
layer of the model for the source and the target sensor dataset.
The features are averaged over the number of samples in a
single batch. Since, it is assumed that the target dataset has
no labels associated with it, for that reason the features from
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Fig. 2: Multilayer ANN model.

the last fully-connected layer is considered in this part of the
loss function. Therefore the complete loss function defined in
(5) is the summation of equations (3) and (4),

LL = LS + LT (5)

The model considered in this paper is an ANN consisting
of four hidden layers as depicted in Fig. 2 indicating the
number of nodes in each layer. Rectified Linear Unit (ReLU)
is the activation function and categorical cross-entropy loss
is considered as the loss function. After training the ANN
classifier model, the classification performance is tested on
the target sensor. In the testing phase the actual labels of the
target sensor dataset is included to assess the performance
of the model. The algorithm for training the ANN is briefly
presented in Algorithm 2.

Algorithm 2 Training the classifier model.

Input: Source dataset
(
XS , yS

)
, target dataset

(
XT , yT

)
,

learning rate α, number of epochs E
Output: Trained model parameters, θ

1: Initialize model parameters, θ
2: for epoch = 1 to E do
3: for each batch (XS

batch, y
S
batch), (X

T
batch) do

4: Compute predictions, ŷ = f
(
XS

batch, θ
)

5: Compute features, M
(
XS

batch

)
and M

(
XT

batch

)
6: Compute loss, LL = LS + LT

7: Calculate gradients, ∇θLL

8: Update model parameters, θ ← θ − α∇θLL

9: end for
10: end for
11: Return trained model parameters, θ

IV. RESULTS

In this section, we present the classification reports gener-
ated from the experiments. These reports encompass common
performance indicators such as precision, recall, F1-score, and
accuracy, providing a measure of the model’s effectiveness.
Also the model’s training and testing performance over the
training epochs are provided using the loss and accuracy plots
which will provide a better understanding of the model’s
learning process and its generalization capabilities. The ANN

(a) Training vs. testing loss per epoch

(b) Training vs. testing accuracy per epoch

Fig. 3: Accuracy and loss comparison over training epochs
with outdoor source sensors and target indoor sensor.

model is trained together with the labeled dataset from the
source sensor and the unlabeled samples of the target sensor.
In both the cases the dataset consists of three classes: no-fault,
drift fault, and bias fault. The dataset is partitioned in 80:20
ratio for the training and testing purpose and standardized
using the standard scalar method. Initially, one outdoor sensor
is considered as the source sensor and the indoor sensor is
considered as the target sensor. The model is trained for 300
epochs with Adam optimization technique setting the learning
rate at 0.001. The dataset is partitioned at an 80:20 ratio into
training and testing sets.

The loss and accuracy patterns for training and testing over
the training epochs are shown in Fig. 3. The losses on the two
sets seem to decrease gradually over the epochs, as shown
in Fig. 3a. The decrease in loss is a little faster up to the
100th epoch, then the rate of decrease becomes smaller and
eventually settles around a value of 0.07. The variation in
the test loss is a bit higher compared to the training loss;
however, the variations diminish as the training progresses.
In the evaluation of the fault classifier model on the test set
data, an accuracy of 97.24% is obtained. While the accuracy
reflects the overall performance, the precision and recall values
highlight the model’s effectiveness in correctly identifying
positive instances, which in this case are 97.43% and 97.24%
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Fig. 4: Confusion matrix with outdoor source sensor and
indoor target sensor.

respectively. The reported f1-score value of 97.26% indicates
the model’s balanced performance in sensor fault classifica-
tion. The confusion matrix presented in Fig. 4 provides a
detailed breakdown of the model’s performance across three
classes. The matrix reveals that the model achieves high
accuracy in identifying ”No Fault” and ”Bias Fault” instances,
with 116 and 93 correctly classified samples, respectively.
Misclassification rates are minimal, with only 5 ”No Fault”
instances misclassified as ”Bias Fault,” and 3 ”Drift Fault”
instances misclassified as ”Bias Fault.” Importantly, no ”Bias
Fault” instances were misclassified as ”Drift Fault,” indicating
the model’s robustness in differentiating between these specific
classes.

In the second case, one of the outdoor sensor is considered
as the source sensor and the other outdoor sensor is treated
as a target sensor. The loss and accuracy pattern for training
and testing over the training epochs are depicted in Fig. 5. As
illustrated in Fig. 3, the losses on both the cases exhibits a
gradual decrease over the epochs. Similar to the formal case
the decrease in loss is more pronounced until 100th epoch,
after that it decreases steadily and attains a minimum loss
around 0.07. While evaluating the model on the target sensor’s
test dataset a slightly higher accuracy of about 99.68% is
attained, which indicates the model’s superior performance
in classifying unlabeled instances when both the target and
source sensors are located outside. The precision, recall, and
f1-score are also better marginally as 99.70%, 99.69%, and
99.70% respectively. The classification performance indicators
for both scenarios are presented in Table. I.

The numbers reported in the confusion matrix shown in
Fig.6 also indicate that the model performs better in classifying
faults when both the source and target sensors are located
outside, as there is only one sample misclassified as a drift
fault. Domain adaptation-based transfer learning for sensor
fault classification has recently gained attention. While several

(a) Training vs. testing loss per epoch.

(b) Training vs. testing accuracy per epoch.

Fig. 5: Accuracy and loss comparison over training epochs
with outdoor source sensor and outdoor target sensor.

TABLE I: Comparison of the performance metrics.

Source
sensor
location

Target
sensor
location

Precision Recall F1-score Accuracy

Outdoor Indoor 97.43% 97.24% 97.26% 97.24%
Outdoor Outdoor 99.70% 99.69% 99.70% 99.68%

studies have explored this approach with different datasets,
comparing their results with ours using the WSN dataset is
challenging. However, when comparing classification accuracy
from papers that used the same dataset without domain adap-
tation, our proposed approach shows comparable performance,
as shown in Table. II

V. CONCLUSION

In this study, we explored a transfer learning method as-
sisted by a domain adaptation technique to classify sensor
faults. The domain adaptation technique enables the classifier
model to effectively classify two types of sensor faults in a
target sensor node with a non-labeled sensor fault dataset. The
ANN classifier is trained using a semi-supervised approach,
utilizing labeled samples from the source sensor node and non-
labeled data from the target sensor.

The results obtained from two experiments, conducted at
two different locations of the target sensor, show that the
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Fig. 6: Confusion matrix with outdoor source sensor and
outdoor target sensor.

TABLE II: Comparison with existing works.

Reference Model Faults considered Accuracy

[9] ExtraTree Drift, bias, stuck, spike,
erratic, dataloss, random 81%

[21] ExtraTree Drift, bias, stuck, spike,
erratic, dataloss, random 90%

[20] MLP Drift, bias 89.8%, and
86%

[22] DNN Drift, bias 99.6%

This
paper

ANN
with domain
adaptation

Drift, bias, stuck 97.24% to
99.68%

proposed approach provides impressive classification perfor-
mance. When an indoor sensor is considered as the target
sensor and an outdoor sensor acts as the source sensor,
approximately 97% accuracy is achieved. Conversely, when
both the target and source sensors are located outdoors at
different locations, more than 99% accuracy is reported. The
values of other classification metrics for both experiments are
also very consistent, ensuring the effectiveness of the model
in classifying different classes in the fault dataset. The overall
results imply that this approach can be an effective solution for
missing label datasets in IoT sensor fault classification tasks.

In future work, we plan to include more sensor nodes and
other types of faults into consideration. Additionally, we will
analyze the classification performance by varying the location
and the number of source and target sensor nodes.
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