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Abstract—As the generation of deepfake audio becomes more 
advanced, the need for effective detection techniques has grown 
significantly. This study explores the application of an enhanced 
DCGAN for detecting deepfake audio, with a focus on the Fake or 
Real (FoR) dataset. The model utilizes convolutional layers to 
process spectrograms derived from audio signals. By 
incorporating batch normalization in both the generator and 
discriminator, the model addresses training instability and 
improves convergence. The audio data, including real human 
speech and deepfake renditions generated through Retrieval-
based Voice Conversion (RVC), were preprocessed using Audacity 
and Sonic Visualizer. The enhanced DCGAN was then trained on 
these spectrograms, leveraging adversarial training to improve 
detection capabilities. Performance evaluation of the model 
involved key metrics such as accuracy, precision, recall, and F1-
score. The results revealed an accuracy rate of 98%, marking a 
6.96% improvement over the standard DCGAN. Furthermore, the 
enhanced DCGAN exhibited superior precision and recall in 
distinguishing between real and fake audio samples. 

Keywords— DCGANs, deepfake audio, FoR dataset, 
spectrogram  

I. INTRODUCTION  
As the technology behind deepfake audio continues to 

advance, the need for effective detection methods becomes 
increasingly critical. Using Deep Convolutional Generative 
Adversarial Networks (DCGANs) is one promising approach. 
Enhanced versions of these networks have shown potential in 
improving the accuracy and reliability of deepfake audio 
detection.  

Technological advancements have enabled the use of 
Generative Adversarial Networks (GANs) [1] for creating deep 
fake audio, utilizing a generator and a discriminator that 
compete to improve the model's performance. GANs involve 
two neural networks, where the generator creates data samples 
and the discriminator distinguishes between real and generated 
samples. DCGANs, an extension of GANs, incorporate 
convolutional and deconvolutional layers, making them 
particularly effective for handling image data. DCGAN uses 
convolutional operations and spatial up-sampling to enhance 
image generation and addresses the mode collapse issue, where 
the generator biases toward a limited set of outputs [2]. This 
architecture, which allows DCGANs to generate highly realistic 

images by capturing intricate spatial hierarchies, as 
demonstrated by [3], is also stable in training and serves as a 
foundation for other GAN architectures [2]. Through adversarial 
training, the generator and discriminator continuously refine 
their abilities, leading to the production of images that closely 
resemble real data. 

Although DCGAN is originally designed for image data, it 
can be adapted for audio by transforming the audio into a 2D 
representation, such as a spectrogram—a visual representation 
of sound frequencies over time. The model can then be trained 
on these spectrograms in much the same way it processes 
images, enabling the generator to create new spectrograms that 
can be converted back into audio waveforms [4]. However, 
applying DCGAN to audio may require additional 
preprocessing and adjustments to achieve effective results, but 
it has been successfully used in tasks like music generation and 
voice synthesis.  

The increasing prevalence of deep fake audio has led to the 
use of Explainable AI (XAI) techniques to identify fake 
frequencies, which helps in reviewing and improving deep fake 
audio creation using GANs [5]. Various deep learning methods 
for detecting deep fakes have been reviewed, including CNNs 
with fully connected networks, hybrid models, and generative 
models like Autoencoders and GANs, as well as Recurrent 
Neural Networks such as LSTM, GRU, and Transformers [6]. 
DCGANs use convolutional layers for both downsampling and 
upsampling, employing convolutional and transposed 
convolutional layers for generating and discriminating functions 
[7]. 

Despite limited exploration of joint audiovisual 
representation learning for deepfake detection [8], the rapid 
advancement in generating realistic fake audio [9] with 
sophisticated neural networks has surpassed traditional 
detection methods, highlighting the need for more advanced 
tools. Among these tools, DCGANs have demonstrated 
potential in improving detection capabilities for deepfake audio. 
This study aims to assess the performance of enhanced 
DCGANs in detecting deepfake audio across selected FoR 
datasets, providing valuable insights into their effectiveness and 
potential applications in addressing the growing challenge of 
deepfake audio. 
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II. RELATED WORKS 
The literature on DCGANs is extensive and influential, 

focusing on their performance and characteristics.  
The emergence of deepfake audio, which involves 

generating highly realistic synthetic audio using advanced 
neural networks, has significantly outpaced traditional 
detection methods, highlighting the urgent need for more 
sophisticated detection tools.  

TABLE 1. COMPARISON OF DEEPFAKE AUDIO DETECTION APPROACHES 

Deepfake 
Detection Tool 
and Author  

Datasets 
Used Model Used Accuracy 

DeepSonar [10] ASVspoof 
2019, TIMIT 

Custom 
ultrasonic 
waveform 
model 

~92% 

Resemblyzer[11] LibriSpeech, 
VoxCeleb 

Resemblyzer 
model 
(embedding-
based neural 
network) 

~85% 

DeFake[8] VoxCeleb2, 
FakeAVCeleb 

Multimodal 
deep 
learning 
model 
(audio-
visual) 

~88%  

AutoVC-based 
Detector [12] 

VCTK 
Corpus, 
LibriTTS 

AutoVC 
model 
(voice 
conversion-
based) 

~80%  

WaveFake [13] 

WaveFake (a 
combination 
of multiple 
datasets) 

Waveform 
analysis 
model with 
deep 
learning 

~83%  

SE-ResNet50 
[14] 

ASVspoof 
2019, LA & 
PA datasets 

SE-
ResNet50 
(deep 
learning 
architecture) 

~87%  

 
Deepfake detection applications employ various techniques 

with distinct strengths and weaknesses. DeepSonar performs 
well in controlled conditions but struggles in noisy 
environments, Resemblyzer is effective for specific languages 
but can miss high-quality deepfakes, and DeFake integrates 
visual and audio data, though it is computationally intensive; 
AutoVC-based Detector, WaveFake, and SE-ResNet50 each 
have limitations in generalization and validation across diverse 
deepfake types and real-world scenarios. 

 
DCGANs have shown promise in improving the detection 

of such forgeries due to their ability to learn complex features 
and patterns from data. An improved DCGAN, by [15], features 
a double branch structure aimed at extending SWIR-HSI 
spectra. This enhancement improved classifier accuracy, as 
evaluated using a 1-NN classifier. The effectiveness of this 
improved DCGAN was further verified by three commonly 
used classifiers: decision tree (DT), random forest (RF), and 
support vector machine (SVM), as demonstrated by [16].  

 
SA-SN- CGAN method [17], generates synthetic 

images to meet training requirements by integrating a DCGAN 
[18], [19] with self-attention (SA) and spectral normalization 
(SN). This method combines these techniques for synthetic 
image generation, uses PSNR-CWT preprocessing for signal-
to-image conversion, and enhances fault diagnosis 
performance, especially in small-sample cases, through fine-
tuning transfer learning. 

 
Data augmentation methods are crucial for generating new 

datasets from existing ones [20]. However, to address 
unbalanced data, data augmentation is necessary, but surrogate 
data can often be physically invalid, leading to inaccurate 
predictions. To mitigate this, [21] developed a deep learning 
model with physical constraints to predict porosity in laser 
metal deposition (LMD), utilizing a DCGAN for data 
generation. 

 To create large datasets affordably, [22] utilizes a DCGAN. 
This approach generates synthetic images that deceive the 
discriminator into believing they are real, followed by 
additional pre-processing techniques. The study explores a 
synthetic speech dataset called Fake or Real (FoR) by [23], 
which enhances the diversity of deepfake speech data for this 
purpose. 

III. METHODS 
To effectively assess the performance of the enhanced 

DCGAN, particular samples from the Fake or Real (FoR) 
dataset [24] were carefully selected. This targeted selection 
ensures that the chosen data aligns with the objectives of the 
evaluation, allowing for a focused assessment of the model's 
ability to generate realistic outputs and improve upon the 
existing architecture.  

TABLE 2. DATASETS SUBJECTED FOR PRE-PROCESSING, TRAINING, TESTING 
AND VALIDATION  

FoR Speech Length (MM:SS) 

Real  Barack Obama 10:00 

Fake Biden-to-Obama 10:00 
 

Linus-to-Obama 9:30 
 

Musk-to-Obama 10:00 

 Ryan-to--Oobama 1:33 

 Taylor-to-Obama 10:00 

 Trump-to-Obama 10:00 

 
All audio data were preprocessed using Audacity, where 

each audio file was trimmed to a length of 3 seconds. The 
preprocessed audio was then converted into spectrograms using 
Sonic Visualizer, and data augmentation techniques [25] such 
as time stretching and pitch shifting were applied before 
inputting the spectrograms into the DCGAN. 
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3.1 Model Enhancement  

 

 

 

 

 
 
 
 
 

 
Following the successful applications of convolutional 

neural networks (CNNs) [26], [27], [28] researchers recognized 
their potential and combined CNNs with GANs [3] to introduce 
DCGAN.  

To design an enhanced DCGAN architecture tailored for 
audio data, it is essential to adapt the conventional DCGAN 
[29] to accommodate the unique characteristics of audio 
signals, such as their temporal structure and frequency content. 
The generator upsample a latent vector, typically sampled from 
a normal distribution, into audio-like structures such as 
waveforms or spectrograms, with extensive use of batch 
normalization to stabilize training and improve convergence. 
The discriminator, on the other hand, designed to handle the 
temporal relationships in audio data while distinguishing 
between real and fake samples [30], [31]. Standard GAN loss 
functions, like binary cross-entropy, are employed, with 
possible modifications [32] such as the Wasserstein loss to 
enhance training stability. 

 
3.2 Training Procedure 

 
Several hyperparameter were adjusted to enhance DCGAN 

for audio deepfake detection such as batch size, number of 
layers and neurons, and experiment with different activation 
functions and loss functions to optimize the model’s ability 
[33] to generate and distinguish audio features. 
 
3.3 Performance Evaluation 
  

The performance of the enhanced DCGANs were assessed 
using metrics such as accuracy, precision, recall, and F1-score. 
Accuracy measures the proportion of correctly predicted 
instances (both true positives and true negatives) out of the total 
instances. Precision indicates how many of the predicted 
positives were actually correct. Recall measures how well the 
model identifies true positives. F1-score is the harmonic mean 
of precision and recall, providing a single measure that balances 
both concerns. These metrics are calculated for each FoR 
dataset to provide a comprehensive evaluation as follows. 
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Cross-dataset validation was conducted to test the model 

trained on one FoR dataset on another to assess generalization 
capabilities. 

IV. EXPIRIMENTAL RESULS  
For the experiments conducted in this study, the authors 

utilized Google Colab with a T4 GPU for computational 
resources, along with Python 3.6.6 and TensorFlow 1.10.0 for 
model development and training. MATLAB and Librosa were 
employed for additional data processing and analysis. 

 
4.1 Fake vs Real Spectrogram Samples  

 
Fig. 2 Fake Spectrogram Samples 

 

 

 

 

 

 The figures represent preprocessed spectrogram samples, 
with Fig 2 showcasing fake spectrograms and Fig 3 displaying 
real spectrograms. These preprocessed spectrogram samples 
were used in the training, testing, and validation phases of the 
model development. 

4.2 Summary of Enhanced DGAN model architecture  

 The summary outlines the model's layers, output shapes, and 
parameters, summarizing the architecture of the sequential 
model used. 

TABLE 3. DETAILED LAYER OF THE SEQUENTIAL MODEL  

Layer (type)  Output Shape Param # 

conv2d (Conv2D)                      (None, 62, 62, 64) 1,792 
max_pooling2d 
(MaxPooling2D)   (None, 31, 31, 64)   0 

conv2d_1 (Conv2D)    (None, 29, 29, 128) 73,856 
max_pooling2d_1 
(MaxPooling2D) (None, 14, 14, 128)     0 

flatten (Flatten)      (None, 25088) 0 

dense (Dense)         (None, 128)   3,211,392 

dropout (Dropout)       (None, 128)       0 

dense_1 (Dense)      (None, 2) 258 

Fig 1. Enhanced DCGAN Architecture 

Fig. 3 Real Spectrogram Samples 
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 The summary shows a sequential neural network 
architecture comprising multiple layers designed for processing 
input data, such as spectrograms, using convolutional and dense 
layers. The model begins with two Conv2D layers, each followed 
by MaxPooling2D layers, which reduce spatial dimensions and 
control overfitting. These convolutional layers extract features 
by capturing patterns like edges or textures. A Flatten layer then 
converts the 3D output into a 1D vector, preparing it for the 
fully connected Dense layers, where complex relationships in the 
data are learned. A Dropout layer is included to prevent 
overfitting by randomly dropping neurons during training. The 
final Dense layer, with 2 neurons, outputs the model's predictions 
for classification tasks (e.g., real vs. fake). The model has a total 
of 3,287,298 trainable parameters and achieved a test loss of 
0.051 and a test accuracy of 98.4%, demonstrating its 
robustness and effectiveness in classification tasks. 

4.3 Testing Accuracy and Loss Results 
 
 

 

 

 

 

 

 

 

 

 

 The training data were processed over 30 epochs. During this 
period, Training Loss illustrates the model's performance, with 
an initial sharp decrease indicating rapid learning, followed by 
fluctuations but an overall downward trend, suggesting 
improvement over time. Similarly, Training Accuracy shows a 
sharp increase initially, indicating rapid improvement, and 
around epoch 5, the accuracy plateaus, maintaining high values 
above 0.95 for the remaining epochs, suggesting that the model 
achieves and sustains excellent accuracy early in the training 
process. 

 

 

 

 

 

 

 

 

 

 

 

 

 The confusion matrix shows the performance of a 
classification model distinguishing between ‘fake’ and ‘real’ 
labels. It correctly identified 177 ‘fake’ instances and 192 ‘real’ 
instances, with 6 ‘fake’ instances misclassified as ‘real’. There 
were no ‘real’ instances misclassified as ‘fake’. The color 
intensity indicates the frequency of each classification, with 
darker shades representing higher counts. 

  

TABLE 4. PERFORMANCE METRICS COMPARISON FOR DCGAN AND 
ENHANCED DCGAN 

 DCGAN Enhanced DCGAN 
 Precision Recall F1-

score 
Precision Recall F1-

score 
Fake 1.00 0.75 0.86 1.00 0.97 0.98 
Real 0.81 1.00 0.90 0.97 1.00 0.98 

 

 The table compares the performance metrics of a standard 
DCGAN and an Enhanced DCGAN across precision, recall, and 
F1-score for both fake and real images. The Enhanced DCGAN, 
excels with a precision of 0.97 and perfect recall, achieving an 
F1-score of 0.98. These results emphasize that the Enhanced 
DCGAN significantly outperforms the standard DCGAN in 
both distinguishing fake and real images, demonstrating 
superior overall effectiveness in performance metrics. 

TABLE 5. COMPARISON OF AVERAGED VALIDATION METRICS OF THE MODELS  

Model Acc Pre Rec F1 

XGBoost (300) .993 .995 .991 .993 

Random Forest (310) .989 .995 .983 .989 

Quadratic Discriminant Analysis  .948 .969 .924 .946 

Linear Discriminant Analysis  .889 .886 .893 .889 

Ridge .883 .884 .882 .883 

Naïve Bayes (Gaussian) .83 .864 .784 .822 

KNN 1 .815 .808 .827 .817 

SVM .723 .815 .576 .675 

Naïve Bayes (Bernoulli) .692 .742 .587 .655 

Stochastic Gradient Descent .668 .732 .76 .681 

Gaussian Process .614 .97 .229 .372 

DCGAN .92 .93 .795 .675 

Enhanced DCGAN .984 .98 .98 .98 

  

 The table [34]  presents a comparative analysis of various 
models across accuracy, precision, recall, and F1-score. Among 
the models listed, the Enhanced DCGAN stands out with an 
impressive accuracy of 0.984, precision of 0.980, recall of 0.980, 
and an F1-score of 0.980. This performance highlights its 
superior effectiveness in classification tasks, significantly 
outperforming models like XGBoost and Random Forest, which 
have slightly lower F1-scores of 0.993 and 0.989, respectively. 
In comparison, more basic models such as KNN, SVM, and 
Gaussian Process show notably lower metrics across all 
measures. The Enhanced DCGAN's consistent high 

Fig. 4 Graph of Training Accuracy and Training Loss 

Fig. 5 Confusion Matrix 
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performance underscores its exceptional capability in delivering 
reliable and accurate predictions, setting it apart from other 
algorithms listed in the table.   

V. CONCLUSIONS 
 As deepfake audio technology advances, effective detection 
methods are increasingly critical. This study evaluates the 
performance of Enhanced DCGANs for detecting deepfake 
audio using the selected FoR datasets. Other deepfake detection 
techniques, including CNNs, hybrid models, and generative 
approaches, have struggled to keep pace with the rapid evolution 
of deepfake audio technologies. Enhanced DCGANs, with their 
advanced architecture and training methodologies, offer a 
promising solution. The study involves preprocessing audio data 
into spectrograms, training the Enhanced DCGAN on these 
representations, and evaluating its performance using metrics 
such as accuracy, precision, recall, and F1-score. 

Results demonstrate that the Enhanced DCGAN 
outperforms other models significantly. It achieved an accuracy 
of 98%, surpassing other methods such as XGBoost and 
Random Forest. The Enhanced DCGAN’s ability to maintain 
high performance across various FoR datasets highlights its 
robustness and effectiveness in detecting deepfake audio. 

This study confirms that Enhanced DCGANs represent a 
significant advancement in the field of deepfake detection, 
offering superior performance and reliability compared to 
existing techniques. The findings underscore the potential of 
Enhanced DCGANs as a powerful tool for addressing the 
growing challenge of deepfake audio, suggesting their 
promising application in future detection systems. 
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