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Abstract—CNN-LSTM has been established for predictive 
modeling in urban air pollution. However, while the method is 
accurate for time series forecasting, it struggles with accurately 
capturing spatial variability in air quality data. To address this 
limitation, we propose an Enhanced CNN-LSTM Prediction 
Model for vehicle-mounted air quality monitoring systems. This 
model integrates Convolutional Neural Networks (CNNs), 
spatial attention mechanisms, and Long Short-Term Memory 
(LSTM) networks to enhance the capture of both spatial and 
temporal dependencies in the data. Performance evaluation 
shows a Mean Absolute Error (MAE) of 5.2 µg/m³ for PM2.5, 
1.3 µg/m³ for PM10, 0.1 ppm for CO, 0.1 ppm for VOCs, and 
0.68°C for temperature, with Root Mean Squared Error 
(RMSE) values of 7.8 µg/m³ for PM2.5, 1.5 µg/m³ for PM10, 0.10 
ppm for CO, 0.10 ppm for VOCs, and 0.75°C for temperature. 
Compared to traditional models like Linear Regression and 
standalone LSTM networks, the Enhanced CNN-LSTM model 
demonstrates substantial improvements in prediction accuracy. 
These findings highlight the model’s superior performance in 
delivering accurate, real-time air quality predictions, offering a 
robust framework for pollution management and public health 
interventions. 

Keywords—Air quality monitoring, Convolutional Neural 
Networks, Long Short-Term Memory networks, spatial 
attention, predictive modeling, vehicle-mounted sensors. 

I. INTRODUCTION 
Air quality remains a critical concern in urban 

environments, where rapid industrialization, increasing 
vehicular traffic, and dense population centers significantly 
contribute to pollution [1]. Urban areas are often burdened 
with high levels of pollutants such as particulate matter 
(PM2.5 and PM10), nitrogen oxides (NOx), sulfur dioxide 
(SO2), volatile organic compounds (VOCs), and carbon 
monoxide (CO), all of which pose severe risks to public health 
and the environment [2]. Conventional air quality monitoring 
systems including stationary monitoring stations, satellite 
observations, and portable air samplers each have notable 
limitations. Stationary stations, while providing valuable 
baseline data, lack comprehensive spatial coverage and cannot 
capture real-time variations across diverse urban zones [3]. 
Satellite observations offer broad spatial coverage but may not 
effectively capture street-level pollution details due to 
resolution constraints and factors such as cloud cover [4]. 
Portable samplers, although flexible, rely on manual operation 
and do not support continuous, real-time monitoring [5]. 

Recent advancements in mobile sensors mounted on 
vehicles present a promising solution for dynamic and 
extensive air quality monitoring [6]. These systems have the 
capability to collect data across various urban locations in 
real-time, offering enhanced insights into pollution levels and 
spatial distribution. However, existing mobile monitoring 

solutions face challenges in data processing and interpretation, 
often lacking integration with sophisticated predictive 
modeling techniques essential for accurate analysis and 
forecasting [7]. 

To address these limitations, there is a growing interest in 
leveraging advanced machine learning models to improve air 
quality prediction accuracy. Traditional methods such as 
decision trees and linear regression often fall short in 
capturing the complex, non-linear interactions and spatio-
temporal dynamics inherent in atmospheric data [8]. Long 
Short-Term Memory (LSTM) networks, known for their 
efficiency in modeling time-series data, offer improvements 
but are limited when used as standalone models due to their 
insufficient capabilities in handling of spatial dependencies 
[9].  

The integration of Convolutional Neural Networks 
(CNNs) and LSTM networks offers a robust approach to 
overcoming these limitations. CNNs excel in processing 
spatial data, extracting meaningful features from high-
dimensional data arrays, while LSTMs are adept at modeling 
temporal trends. To further enhance spatial accuracy, this 
study integrates spatial attention mechanisms within the CNN 
component, enabling the model to focus on the most relevant 
spatial features of air quality data [10]. By complementing 
CNNs' spatial strength with LSTMs' temporal forecasting 
capabilities, this approach seeks to optimize predictions of 
pollution dynamics. 

This study introduces an Enhanced CNN-LSTM 
Prediction Model, specifically tailored to address key 
challenges in real-time air quality monitoring, a critical 
component in managing urban pollution and its associated 
public health impacts. The model enables more accurate 
predictions of air quality parameters such as particulate matter 
(PM2.5, PM10), carbon monoxide (CO), and volatile organic 
compounds (VOCs) by leveraging CNNs with spatial 
attention mechanisms for enhanced spatial feature extraction 
and LSTMs for effective temporal trend analysis. This model 
has the potential to assist urban policymakers in making data-
driven decisions to reduce pollution exposure and mitigate 
health risks. The increasing focus on climate resilience, 
particularly in rapidly urbanizing areas, underscores the need 
for such advanced models that can be integrated into city-wide 
environmental monitoring frameworks and expected to 
provide more reliable insights into air quality dynamics, 
supporting improved pollution management strategies and 
public health interventions. 

By advancing the integration of CNNs with spatial 
attention mechanisms and LSTMs, this study aims to 
contribute to the development of more effective air quality 
monitoring systems, ultimately enhancing environmental 
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health outcomes and informing policy decisions in urban 
settings. 

II. RELATED WORKS 
Air quality monitoring has made significant strides with 

the integration of advanced computational models and 
dynamic data collection systems, particularly in urban 
environments where pollution levels vary significantly [1]. 
Despite these advancements, many existing systems face 
challenges, such as capturing real-time data across large areas 
and accurately predicting air quality trends [8]. These 
challenges underscore the need for more sophisticated 
approaches, such as vehicle-mounted sensors combined with 
machine learning algorithms, to enhance the precision and 
scalability of urban air quality monitoring efforts. 

Monitoring air quality is crucial for public health and 
environmental policy, especially in densely populated urban 
areas where pollutants from traffic, industrial activities, and 
residential sources degrade air quality [6]. Traditional 
methods have relied on fixed monitoring stations, which, 
though strategically located, often suffer from limited spatial 
coverage and fail to provide the real-time data necessary for 
timely interventions during pollution events [10]. 

A. Mobile Monitoring Systems 
Recent research has emphasized the benefits of mobile 

monitoring systems like vehicle-mounted sensors, which 
improve the spatial resolution of air quality data and provide 
a more detailed mapping of pollution patterns [11]. These 
systems address the limitations of fixed stations by covering 
larger areas and delivering real-time data. Additionally, 
technological advancements have introduced tools like drones 
and wearable sensors that expand the scope of monitoring, 
offering high-resolution data from hard-to-reach locations and 
personal exposure assessments [12]. These innovations 
enhance the effectiveness of air quality management by 
enabling real-time, comprehensive environmental data 
collection, which informs public health responses and 
supports long-term urban planning strategies. 

B. Urban Air Pollution 
Urban air pollution poses significant health risks, with 

pollutants like fine particulate matter (PM2.5), nitrogen oxides 
(NOx), and volatile organic compounds (VOCs) contributing 
to respiratory and cardiovascular diseases [3]. Chronic 
exposure to these pollutants exacerbates conditions like 
asthma and increases morbidity and mortality in urban 
populations. Studies on pollutant dispersion patterns highlight 
the need for adaptive monitoring systems capable of capturing 
detailed pollution data across various times and locations [15]. 
This data is essential for developing strategies that minimize 
public exposure to harmful pollutants and inform urban 
planning and traffic management decisions [16]. 

C. Predictive Modeling 
Predictive modeling is essential in air quality monitoring, 

enabling proactive urban environment management through 
advanced algorithms [13]. Traditional statistical models, such 
as linear regression, have been used to predict pollution trends, 
but they often fail to capture the complex, non-linear 
relationships present in urban air quality data [14]. Recent 
advancements in machine learning, particularly deep learning 
models, provide more robust methods for handling these 
complexities [15]. Hybrid models that combine Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks have shown superior performance in 
capturing both spatial and temporal dependencies in air 
quality data. 

D. CNN-LSTM Model 
CNNs are particularly effective in extracting spatial 

features from environmental data, while LSTMs excel at 
modeling sequential data, such as air quality trends over time 
[18]. These hybrid CNN-LSTM models leverage the strengths 
of both networks, offering a comprehensive approach to 
modeling the spatial and temporal dimensions of air quality 
data. This combination is especially valuable in vehicle-
mounted systems, where dynamic data collection requires 
robust algorithms capable of processing large, complex 
datasets. Studies have demonstrated that CNN-LSTM models 
outperform traditional approaches in air quality prediction 
tasks, offering improved accuracy and reliability [19]. 

III. SYSTEM OVERVIEW AND PROPOSED APPROACH 

A. System Architecture 
The proposed system architecture integrates advanced 

sensor technologies, robust data processing capabilities, and 
sophisticated machine learning techniques to enhance vehicle-
mounted air quality monitoring. The architecture is divided 
into three main components: the sensor integration module, 
the data processing unit, and the predictive modeling engine. 

a) Sensor Integration Module: The core of the system 
is the sensor integration module, which integrates an 
advanced suite of sensors mounted on vehicles to capture 
comprehensive environmental data in real time. This module 
features particulate matter (PM) sensors, which measure 
concentrations of PM10 and PM2.5, enabling the assessment 
of fine particulate pollution. Gas sensors detect key pollutants 
such as carbon monoxide (CO) and volatile organic 
compounds (VOCs), which are critical for evaluating air 
quality and potential health risks. Temperature sensors 
monitor environmental factors like temperature and 
humidity, providing context for pollution measurements. 
GPS modules ensure accurate geospatial data collection, 
allowing for precise mapping of air quality across different 
urban areas. The RTC module provides exact timestamps for 
each data point, which is crucial for analyzing temporal 
patterns and correlating with traffic. An SD card module is 
included for secure local storage of data, enabling detailed 
historical analysis and safeguarding against data loss. Each 
sensor is selected for its specific measurement targets and 
performance attributes, ensuring that the system provides 
reliable and accurate air quality assessments. Table 1 
provides detailed information on the sensors used, including 
their targets, units of measurement, and response times, to 
offer a clear overview of the module’s capabilities. 

TABLE I.  SENSOR INTEGRATED IN THE SYSTEM 

Sensor Parameters Units Response 
Time 

HM3301 PM10, PM2.5 µg/m³ <5 s 
Gas Sensor CO, VOCs ppm <5 s 
DHT11 Temperature °C <3 s 
GPS (Air530) Coordinates Lat,Long < 1 s 
DS1307 RTC Timestamp Date/ Time  
SD Module Data Storage   

b) Data Processing Unit: The data processing unit is 
crucial for preparing raw sensor data for analysis. It begins 
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with preprocessing to filter out noise and correct biases, 
employing techniques like smoothing and anomaly detection 
to eliminate short-term fluctuations and outliers, while bias 
correction addresses sensor drift and calibration errors. 
Following preprocessing, feature extraction techniques 
identify key air quality indicators. Statistical analysis, 
including mean and variance calculations, and time-series 
decomposition, which separates the data into trend, seasonal, 
and residual components, help to understand pollutant 
distributions and isolate significant patterns from random 
fluctuations. Finally, the data is formatted through 
normalization or standardization to ensure compatibility with 
machine learning models. This meticulous data processing 
ensures accurate and high-quality input for the predictive 
modeling engine, significantly enhancing the effectiveness of 
the vehicle-mounted air quality monitoring system. 

c) Predictive Modeling Engine: The predictive 
modeling engine employs sophisticated machine learning 
algorithms to deliver real-time air quality predictions. Central 
to this system are Long Short-Term Memory (LSTM) 
networks, which excel at processing time-series data by 
capturing long-term dependencies and temporal relationships 
[7]. To enhance spatial data processing, the system integrates 
Convolutional Neural Networks (CNNs) with spatial 
attention mechanisms. CNNs are responsible for extracting 
hierarchical features from multidimensional inputs, such as 
geographic and environmental data layers, enabling the 
model to discern intricate urban patterns and land use 
variations. The spatial attention mechanism refines this 
process by dynamically focusing on the most relevant spatial 
features, which improves the model's ability to identify 
significant environmental factors and anomalies [8]. This 
approach allows the CNNs to better capture and prioritize 
spatially relevant information, which is crucial for 
understanding localized air quality variations. Once spatial 
features are extracted, they are fed into the LSTM network, 
which analyzes these features over time to predict future air 
quality levels. Figure 1 shows the integration of spatial 
attention-enhanced CNNs and LSTMs ensures a 
comprehensive approach to both spatial and temporal data 
analysis, resulting in more accurate and actionable 
predictions. This dual approach is pivotal for the vehicle-
mounted air quality monitoring system, as it enables precise 
tracking and forecasting of air quality variations across 
different urban environments. 

 
Fig. 1. CNN-LSTM Model 

B. Measures of Accuracy 
To evaluate the system’s predictive performance, two key 

metrics are employed: Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE). These metrics assess the 
precision and accuracy of the system's predictions compared 
to actual environmental conditions, providing a robust 
understanding of the model’s performance. 

a) Mean Absolute Error (MAE): The Mean Absolute 
Error (MAE) measures the average magnitude of the errors in 

the predictions without considering their direction. It 
quantifies the average error made by the model in predicting 
air quality parameters, offering a straightforward 
representation of prediction accuracy. The formula for MAE 
is: 

 

  
() 

where yi represents the actual value, ŷi is the predicted value, 
and n is the total number of predictions. A lower MAE 
indicates fewer deviations from the actual values, suggesting 
more accurate predictions.  

b) Root Mean Squared Error (RMSE): The Root Mean 
Squared Error (RMSE) provides a measure of the magnitude 
of error by calculating the square root of the average squared 
differences between predicted and actual values. RMSE is 
particularly sensitive to large errors, making it a valuable 
metric for identifying significant deviations in predictions, 
even if they occur infrequently. The formula for RMSE is: 

 

  
() 

Similar to MAE, a lower RMSE value signifies better 
predictive accuracy, indicating that the model closely aligns 
with actual environmental conditions. 

Both MAE and RMSE are crucial for evaluating the 
performance of the predictive models within the system. 
These metrics not only assess the current accuracy of the 
system but also guide ongoing improvements to enhance 
predictive capabilities. 

C. Block Diagram 

 
Fig. 2. Block Diagram of the Device 

 The block diagram of the system illustrates its 
advanced vehicle-mounted air quality monitoring capabilities, 
integrating a sophisticated array of interconnected 
components for comprehensive environmental insights. At the 
heart of this system is a sensor array which includes the 
HM3301 PM sensor, measuring particulate matter such as 
PM2.5 and PM10. Additional sensors in the array include the 
MQ7 and MQ135, responsible for detecting carbon monoxide 
(CO) and various volatile organic compounds (VOCs) 
respectively, alongside the DHT22 sensor that monitors 
temperature and humidity. A GPS module is also integrated to 
ensure precise geospatial data collection during vehicle 
transit. 

Central to processing this diverse array of environmental 
data is the Arduino Uno microcontroller, which acts as the 
orchestrator of the system. It communicates efficiently with 
each sensor, managing the flow and collection of data. The 
system's functionality is further enhanced by several key 
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peripheral modules. These include an SD card module for 
local storage of air quality data, ensuring both data integrity 
and support for long-term data retention; a Real-Time Clock 
(RTC) module which provides accurate timestamping critical 
for data analysis; and the ESP8266 Wi-Fi module. This Wi-Fi 
module facilitates seamless communication with external 
networks, enabling the system to connect to the internet for 
the real-time transmission of air quality data to cloud servers. 
This capability allows for remote monitoring and gives users 
access to both real-time and historical data via a cloud-based 
platform, enabling informed decision-making and 
comprehensive analysis of air quality trends. Overall, the 
block diagram of the system encapsulates its ability to 
efficiently collect, store, timestamp, and transmit air quality 
data, providing invaluable insights for proactive 
environmental monitoring and management. 

IV. RESULTS 

A. Performance EVALUATION OF THE ENHANCED CNN-
LSTM MODEL 
The performance of the Enhanced CNN-LSTM model was 

evaluated using Mean Absolute Error (MAE) and Root Mean 
Squared Error (RMSE) for various air quality parameters. The 
results, which highlight the model's effectiveness in capturing 
complex air quality patterns, are summarized in Table II. 

TABLE II.  PERFORMANCE METRICS OF THE ENHANCED CNN-LSTM 
MODEL 

Metric PM2.5 
(µg/m³) 

PM10 
(µg/m³) 

CO 
(ppm) 

VOCs 
(ppm) 

Temperature 
(°C) 

MAE 1.22 1.48 0.10 0.10 0.68 
RMSE 1.06 1.50 0.10 0.10 0.75 

The evaluation of the prediction model's performance 
across various parameters reveals a nuanced understanding of 
its accuracy. For particulate matter with a diameter of 2.5 
micrometers (PM2.5), the Root Mean Squared Error (RMSE) 
and Mean Absolute Error (MAE) values are 1.06 and 1.22 
µg/m³, respectively. These results suggest that while the 
model demonstrates moderate accuracy in predicting PM2.5 
concentrations, significant prediction errors persist. This 
could be due to the inherent variability in PM2.5 levels, which 
may not be fully captured by the model. 

In contrast, predictions for particulate matter with a 
diameter of 10 micrometers (PM10) exhibit higher error 
metrics, with an RMSE of 1.50 and an MAE of 1.48 µg/m³. 
This suggests that while the model performs well for PM2.5, 
its accuracy for PM10 might be impacted by external factors 
such as wind patterns, vehicular traffic, and other 
environmental conditions not included in the training data. 
Future research should explore additional sensors or 
preprocessing techniques to address these challenges and 
enhance model robustness across varied conditions. 

On the other hand, the model demonstrates exceptional 
performance in predicting carbon monoxide (CO) and volatile 
organic compounds (VOCs), with both parameters showing 
low RMSE and MAE values of 0.10. This suggests that the 
model effectively captures CO and VOC variations with 
minimal deviation from actual measurements, likely due to 
their relatively stable concentrations in the studied areas. 

Temperature predictions also show reasonable accuracy, 
with an RMSE of 0.75 and an MAE of 0.68. While these 
values indicate fair prediction accuracy, moderate errors 
suggest that factors such as time of day and weather conditions 

might influence temperature variability and contribute to 
prediction discrepancies. 

B. COMPARATIVE ANALYSIS 
The Enhanced CNN-LSTM model was compared with 

traditional models, including Linear Regression, standalone 
LSTM networks, and CNN-LSTM without attention 
mechanisms. This comparison highlights the model's superior 
performance across all air quality parameters. Notably, the 
integration of spatial attention within the CNN-LSTM 
framework has enabled the model to outperform traditional 
approaches by focusing on relevant spatial patterns within the 
data. This novel contribution addresses a gap in prior works 
on air quality monitoring and makes the model particularly 
valuable for urban environments, where pollutant distribution 
is irregular due to varying human activities and geographic 
factors. The results are presented in Table III. 

TABLE III.  COMPARATIVE PERFORMANCE OF AIR QUALITY 
PREDICTION MODELS 

Model MAE (µg/m³/ppm/°C) RMSE 
(µg/m³/ppm/°C) 

Linear 
Regression 

10.5 15.2 

LSTM 7.9 11.3 
CNN-LSTM 
(Without Spatial 
Attention) 

6.3 9.2 

CNN-LSTM 
(Proposed) 

5.2 7.8 

Table III provides a comparative analysis of various air 
quality prediction models, including Linear Regression, 
standalone Long Short-Term Memory (LSTM) networks, a 
CNN-LSTM model without spatial attention, and the 
Enhanced CNN-LSTM model proposed in this study. The 
table highlights the Mean Absolute Error (MAE) and Root 
Mean Squared Error (RMSE) for each model, critical 
indicators of predictive accuracy. The Linear Regression 
model, with the highest MAE of 10.5 and RMSE of 15.2, 
demonstrates the least accuracy among the models. This 
indicates that while Linear Regression is straightforward, it 
falls short in capturing complex air quality patterns, leading to 
larger prediction errors. 

The standalone LSTM model shows improved 
performance with an MAE of 7.9 and RMSE of 11.3, 
reflecting better handling of temporal dependencies. The 
CNN-LSTM model without spatial attention offers even better 
accuracy with an MAE of 6.3 and RMSE of 9.2. This model 
benefits from combining convolutional layers for feature 
extraction and LSTM layers for sequence modeling but lacks 
spatial attention, which could enhance its performance further. 

The Enhanced CNN-LSTM model, integrating spatial 
attention mechanisms, achieves the lowest MAE of 5.2 and 
RMSE of 7.8. This model demonstrates a significant 
improvement over all other models, including the CNN-
LSTM model without spatial attention. The addition of spatial 
attention allows the model to focus on the most relevant 
spatial features in the air quality data, leading to more precise 
predictions and overall better performance. This comparative 
analysis underscores the effectiveness of advanced modeling 
techniques, particularly the integration of spatial attention, in 
improving air quality predictions. 
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C. MODEL INSIGHTS AND IMPLICATIONS 
The Enhanced CNN-LSTM model effectively integrates 

spatial and temporal data, providing a robust tool for vehicle-
mounted air quality monitoring. Its superior performance in 
capturing pollutants such as CO and VOCs highlights its 
capability to discern specific environmental factors crucial for 
accurate air quality forecasting. 

TABLE IV.  PERFORMANCE SUMMARY OF ENHANCED CNN-LSTM 
MODEL 

Parameter Performance Insight 
CO The Enhanced CNN-LSTM model demonstrates 

superior performance in predicting CO levels, 
highlighting its capability to capture specific 
environmental factors relevant to carbon monoxide. 

VOCs The model also excels in predicting VOCs, showcasing 
its effectiveness in discerning volatile organic 
compounds accurately. 

PM10 The accuracy for PM10 is lower, indicating that further 
refinement is needed. Potential improvements could 
involve adding additional sensors or enhancing 
preprocessing techniques to better address particulate 
matter variations. 

Temperature Lower accuracy in temperature predictions suggests the 
need for further model refinement, possibly through 
improved data handling methods or additional contextual 
information. 

The lower accuracy for PM10 and temperature suggests 
that further refinement of the model may be necessary. 
Potential improvements could include the incorporation of 
additional sensors or enhanced preprocessing techniques to 
better handle particulate matter and temperature variations.

 
Fig. 3. Example Prediction vs. Actual Data for PM2.5 

Fig. 3 shows an example of predicted vs. actual PM2.5 
levels, illustrating the model’s ability to track changes in air 
quality over time. The alignment between predicted and actual 
values confirms the model's reliability in capturing temporal 
variations, although prediction errors are noticeable during 
periods of high variability. This suggests areas for potential 
model refinement. 

Overall, the Enhanced CNN-LSTM model offers a 
significant advancement in vehicle-mounted air quality 
monitoring systems. Its ability to provide precise, real-time 
predictions supports improved pollution management 
strategies and contributes to better public health outcomes in 
urban environments. 

V. CONCLUSION 
This study introduced an Enhanced CNN-LSTM 

Prediction Model designed to advance vehicle-mounted air 
quality monitoring systems. By integrating Convolutional 
Neural Networks (CNNs) with spatial attention mechanisms 
and Long Short-Term Memory (LSTM) networks, the model 
significantly improves upon traditional air quality monitoring 

methods, offering enhanced spatial and temporal prediction 
capabilities. 

The results reveal that the Enhanced CNN-LSTM model 
achieves superior performance compared to conventional 
approaches. Specifically, it demonstrates a Mean Absolute 
Error (MAE) of 5.2 µg/m³ for PM2.5, 1.3 µg/m³ for PM10, 
0.10 ppm for CO, 0.10 ppm for VOCs, and 0.68°C for 
temperature. The Root Mean Squared Error (RMSE) values 
are 7.8 µg/m³ for PM2.5, 1.5 µg/m³ for PM10, 0.10 ppm for 
CO, 0.10 ppm for VOCs, and 0.75°C for temperature. These 
results indicate the model’s strong capability in predicting air 
quality parameters, reflecting its ability to capture both 
complex spatial patterns and temporal trends. 

Despite its strengths, the model showed some limitations 
in predicting PM10 and temperature with slightly lower 
accuracy, with RMSE values of 1.5 µg/m³ for PM10 and 
0.75°C for temperature. These results suggest that while the 
model performs well overall, further refinement is needed to 
improve accuracy for these parameters. Potential 
improvements could involve adding more sensors or refining 
preprocessing techniques. Future work will focus on these 
aspects to enhance the model’s performance further. Future 
work should focus on addressing the issue of overfitting, 
which arises from the model’s complexity. One promising 
direction is to further explore the integration of dropout 
mechanisms within the spatial attention of CNN-LSTM 
framework. 

In conclusion, the Enhanced CNN-LSTM model 
represents a significant advancement in real-time air quality 
forecasting systems. Its improved prediction accuracy, 
especially in forecasting carbon monoxide and VOC levels, 
provides actionable insights that can directly inform pollution 
control strategies and public health interventions. This work 
establishes a solid foundation for future integration into large-
scale urban air monitoring networks. The model’s application 
in vehicle-mounted systems offers the potential for city-wide 
deployment, enhancing real-time air quality monitoring 
capabilities in densely populated urban environments where 
pollution levels are a critical concern. 
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