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Abstract—Human Pose Estimation (HPE) aims to predict
the positional coordinates of body keypoints in images. While
significant progress has been made in HPE, certain challenges
persist. For example, the potential for robust occlusion can result
in considerable confidence in predicting false-positive keypoints.
This can cause problems in applications where high detection
accuracy is required, such as in a traffic environment. Most
existing methods focus on predicting the positional coordinates of
each human joint, but they fail to consider the keypoint occlusion
problem and detect the visibility of keypoints in the image. In
this paper, we propose a visibility-guided human pose estimation
model, named ViPose. We extract the visibility information of
keypoints to detect whether a specific keypoint of the subject in
the image is obscured by other objects, visible or not captured.
ViPose is composed of two modules: HPE keypoint coordinate
predictor module, and keypoint visibility detector module. To
verify the effectiveness of ViPose, we conduct experiments on
both the general MSCOCO dataset and the diver monitoring
DriPE dataset. The experimental results show that ViPose can
achieve good performance with fewer parameters.

Index Terms—Human Pose Estimation; Keypoint Detection;
Car Cabin Monitoring;

I. INTRODUCTION

Human Pose Estimation (HPE) is a task that focuses on
the localization and identification of specific body keypoints
for the given images [1]. These keypoints typically include
significant anatomical body joints (such as shoulders, elbows,
hips, and ankles), as well as facial markers (such as eyes,
ears, and nose). In some real-world applications, fine-grained
keypoints on the feet, hands, or face may also be utilized
[2]. Within the car cabin environment, HPE has become a
fundamental task which can provide the primary understanding
for the follow-up tasks, such as driver action recognition [3],
human-object interaction [4], and so on. In addition, HPE has
been widely applied to different scenarios, including motion
analysis [5], activity analysis [6], and augmented reality [7].

Recently, deep convolutional neural networks (CNNs) have
demonstrated remarkable efficacy in the domain of single-
person and multi-person HPE. Li et. al. proposed a graphical
model to first build spatial interactions as graphs for 3D HPE
[8]. In addition, Khan et al. proposes a human gait recognition
framework using deep learning and Bayesian optimization,
achieving high accuracy by enhancing video frames and em-
ploying a novel feature fusion and selection approach [9]. Both

single-person and multi-person existing HPE methods mainly
focus on improving the performance of keypoint coordinate
prediction directly.

However, a significant challenge faced by most previous
HPE methods is their inability to handle occlusions of key-
points. Despite recent advancements in the HPE task, most
of the HPE datasets primarily comprise images with minimal
occlusion. Strong occlusion may cause the model to predict
keypoints with high confidence, which may not exist in the
image. Such erroneous predictions of keypoints can pose sig-
nificant challenges for applications where precise estimation
is essential, such as the follow-up human action recognition
task and the driver’s pose analysis.

One major gap is the limited consideration of keypoint
visibility as an auxiliary factor in pose estimation. While
some studies have touched upon the importance of keypoint
visibility, they often do not fully integrate this aspect into
their estimation models. Existing methods although effective
in certain scenarios, lack robustness in cases where keypoints
are partially or entirely occluded. This oversight can lead
to significant inaccuracies in pose estimation, particularly in
complex real-world environments.

To solve the challenge above, we propose a keypoint
visibility-based human pose estimation model, named ViPose.
The main contribution of this paper is listed as follow:

• We combine human pose estimation and keypoint visibil-
ity detector to enhance the accuracy of HPE predictions.

• ViPose detects and identifies the visibility of keypoints of
the subject with three labels: fully visible, not visible, and
not labelled. In parallel, ViPose introduces a transformer
to detect keypoint coordinates.

• To verify the effectiveness of ViPose, we conduct exper-
iments from various angles using two datasets: the gen-
eral MSCOCO dataset, and the diver monitoring DriPE
dataset.

• The experimental results show that the ViPose model
outperforms the previous models in both datasets. In
addition, ViPose can achieve good performance with less
parameters.
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Fig. 1: The framework of the proposed ViPose model. The keypoint coordinate predictor introduces a Transformer
encoder for human pose estimation, and the keypoint visibility predictor utilizes the CNN to detect the visibility of
each keypoint. ‘Conv1’ and ‘Conv2’ represent two CNN layers. ‘FC1’ and ‘FC2’ denote two fully connected layers.

II. RELATED WORK

A. Human Pose Estimation

According to the individuals of the image, the HPE task can
be divided into two categories: single-person HPE task and
multi-person HPE task. The single-person HPE concentrates
on detecting human poses in images with one individual, com-
monly in top-down approach such as tree-structured graphical
models and global-local-graphical models [10].

In contrast, multi-person HPE task detects multiple coordi-
nates for several individuals within the image. The bottom-up
approach is widely employed in multi-person HPE [11]. This
strategy first detects the individuals and then estimates the pose
of each individual independently in each detected region. A
significant advantage is that the computation consumption for
each image is only dependent on the image’s resolution and
regardless of the number of individuals present in the given
image. BEH⊙LDER combines real-time location systems and
deep learning-based multi-person human pose estimation to
monitor and improve surgical workflows in hybrid operating
suites [12]. CGARPN then enhances human behavior under-
standing in complex scenarios by integrating global association
features and adaptive routing for improved accuracy and
efficiency [13]. Recently, a human gait recognition framework
achievs high accuracy by enhancing video frames and employ-
ing a novel feature fusion and selection approach [9]. However,
these strategies suffers from limited performance due to the
complex features of different individuals.

B. Keypoint Visibility on HPE

Recent research on HPE mainly concentrated on enhancing
the accuracy of keypoint coordinate prediction. However, the
analysis of the keypoint visibility is ignored by most studies.
State-of-the-art HPE datasets, such as MSCOCO [14], provide
visibility labels that indicate the presence of each keypoint.

Some algorithms introduce visibility information to the
HPE task. In [15], the authors utilized visibility prediction
to introduce a novel evaluation method for multi-person HPE
in scenarios where heavy occlusion is present. The predicted

visibility of keypoints is quantified as an occlusion score,
which is subsequently used to calculate a performance metric
specifically designed to highlight how effectively the evaluated
networks handle occluded keypoints. Furthermore, the multi-
instance HPE network incorporated a Transformer module to
evaluate the keypoint visibility, a feature treated as a secondary
task within the end-to-end training process [16]. However, the
visibility is a binary score and cannot present the keypoints
that are not labelled. Golda et. al. proposed OccNet, which can
predict the occlusion in the scenario where many people are
occluded in the images [17]. Guesdon et. al. added a visibility
predictor to the HPE base model [18]. However, this model
suffers from sub-optimal performance due to the rough feature
extraction for the human pose.

Although keypoint visibility has been investigated in HPE,
there are still several challenges. The aforementioned methods
have focused on predicting binary visibility and failed to rep-
resent the comprehensive visibility labels in existing datasets.
These visibility labels include non-visible, visible, and non-
labelled. In addition, the previous studies provide limited
quantitative results on the efficacy of visibility predictions.
And the visibility prediction component is primarily auxiliary
in the proposed fixed network. To address these limitations,
we present a modified model that enables HPE techniques to
utilize both keypoints coordinates and keypoint visibility.

III. METHODOLOGY

The detailed framework of the ViPose model is illustrated
in Fig. 1. The ViPose model is composed of two modules,
the HPE keypoint coordinate predictor module as the base
model, and the keypoint visibility detector module. Then in
the training phase, these two modules are integrated to achieve
improved performance for final pose estimation.

A. Keypoint coordinate predictor

As shown in Fig. 1, the keypoint coordinate predictor
consists of three parts: the image feature extraction back-
bone, keypoint extraction transformer, and keypoint prediction
head. Specifically, ViPose first utilizes ResNet-S [19] as the
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backbone to extract the features of input images. Then, a
transformer encoder is introduced for human pose feature
extraction. Finally, the output of the transformer encoder
is augmented with a classification head to estimate human
keypoint heatmaps. The detailed structure is introduced in the
following.

To reduce the parameter redundancy, the ResNet-S [19], a
simplified version of ResNet [20], is employed as the backbone
in this paper. ResNet-S requires much less parameters of the
original ResNet, making ViPose more adaptable to real-world
applications in car cabinenvironments. For the input image
I ∈ R3×H×W , ResNet-S generates a 2D spatial feature map of
the image X f ∈Rd×H×W . Then, the feature map of the image
is transformed into a sequence X ∈ RL×d by the flattening
operation, where L = H ×W .

Then, we introduce the transformer encoder to learn the key-
point features. To clarify, only the encoder of the transformer
is used in ViPose. This is because the task of final heatmaps
prediction can be viewed as an encoding task.The flattened
sequence X is subsequently processed through a sequence of
N attention layers and feed-forward networks (FFNs). In each
attention layer, X is projected into sequence Q∈RL×d . Then, a
multi-head attention mechanism is deployed. The computation
of attention scores matrix A ∈ RN×N is as [19]:

A = softmax
(

QK⊤
√

d

)
, (1)

where K ∈ RL×d denotes the keys, and d denotes the dimen-
sion of image feature X .

The output of the transformer encoder E ∈ RL×d is aug-
mented with a head to estimate K different types of human
joints heatmaps P ∈ RK×H∗×W ∗

, where H∗ and W ∗ equals to
the input size H

4 and W
4 , respectively. To achieve the output,

the matrix E is first reshaped to Rd×H×W , aligning it with
the spatial dimensions required for convolutional processing.
Then, a CNN layer with a kernel size of 1×1 is applied. This
specific kernel size effectively projects the dimensionality of
the matrix from d to K without altering the spatial dimensions
H and W . If the dimensions H and W do not match the
desired dimensions H∗ and W ∗, it is necessary to adjust
the size through upsampling techniques before the 1 × 1
convolution. We employ a supplementary linear interpolation
or a 4×4 transformed convolution, depending on the specific
requirements for the application and the data.

B. Keypoint visibility detector

Parallel to the keypoint coordinate predictor, we design a
visibility detector to predict the existence of the keypoint
in the given image. We adhere to the formalism used in
the MSCOCO dataset and define visibility ground truth with
integer labels: 0 denotes the keypoint is not labelled, 1 denotes
labelled but not visible, and 2 denotes fully visible. Thus, each
keypoint is assigned one of the three labels.

The detailed structure of the keypoint visibility detector is as
follows. For the input images, We first utilize two CNN layers
(Conv1 and Conv2 in Fig. 1) to extract the features, followed

by a max pooling layer. Then, the network stacks two fully
connected layers (FC1 and FC2 in Fig. 1) as the classifier to
map the extracted features to the output label. The final output
is a 1×17 vector representing the visibility prediction results
for 17 keypoints in each image. The prediction results of the
visibility detector also obey the three values of ground truth.

C. Loss Function

ViPose is trained in an end-to-end way [18]. The global
loss function is the combination of the keypoint coordinate
predictor loss LT and the keypoint visibility detector loss LV :

L= (1−α) ·LT +α ·LV , (2)

where the parameter α is trained to balance the ratio between
the loss functions LT and LV . Both two modules utilize Mean
Square Error applied to the predictions and the ground truth.
In subsequent experiments, various α values are investigated
for optimal performance.

IV. EXPERIMENTS AND RESULTS

A. Implementation details

For the keypoint coordinate predictor module, the attention
receives 1/8 down-sampling resolution, the number of heads
is 8, and the number of the attention layers in the Transformer
encoder is set to 4.

For the visibility detector, two CNN layers are with a kernel
size of 3×3. The first layer expands the channel of the image
from 3 to 32 and the second layer further expands it to 64.
The kernel size of the max pooling layer is 2× 2. The fully
connected layer finally generates the output with a dimension
of 17×1, representing the visibility of each keypoints.

The resolution of the input images is uniformly adjusted
to 256 × 192. The generated heatmaps resolution is with a
dimension of 64×48. To determine the optimal parameter α ,
we select the values from {0,0.1,0.2,0.3} and evaluate the
performance under these values.

B. Datasets and evaluation metrics

We evaluate the ViPose model on two datasets: MSCOCO
dataset [14] and the DriPE dataset [24].

MSCOCO. This dataset is one of the most commonly used
datasets for computer vision research. The MSCOCO dataset
comprises 200k images captured in natural settings, with a
total of 250k person instances in total. For the HPE task,
the dataset is divided into train2017, val2017 and test2017
subsets. The train2017 subset consists of 57k images and 150k
person instances, while the val2017 set has 5k images. The
test2017 subset, used for evaluation, comprises 20k images.
Each human instance is annotated with 17 keypoints.

DriPE. Specially designed for vehicle cabin monitoring,
this dataset is built from real-world driving scenarios, charac-
terized by complex conditions, such as illumination changes,
occluding shadows, and moving foreground [24]. DriPE com-
prises 10,000 images of drivers captured under authentic
driving conditions, with 7,400 images designated for training
and 2,600 images equally allocated for validation and testing.
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TABLE I: Comparison with state-of-the-art CNN-based models on the MSCOCO dataset.

Method Parameters AP AP0.5 AP0.75 APM APL

SimpleBaseline [21] 68.6M 73.7 91.9 81.1 70.3 80.0
HRNet-W32 [22] 28.5M 74.9 92.5 82.8 71.3 80.9
HRNet-W48 [22] 63.6M 74.2 92.4 82.4 70.9 79.7
DarkPose [23] 63.6M 76.2 92.5 83.6 72.5 82.4
TransPose R [19] 4.74M 75.1 92.6 82.6 71.9 79.6
ViPose (Ours) 11.2M 75.2 92.5 82.6 72.1 79.9

TABLE II: Comparison with state-of-the-art CNN-based models on the DriPE dataset.

Method Parameters AP AP0.5 AP0.75 AR AR0.5 AR0.75

SBI [24] 71.2M 96.5 99.9 99.9 97.5 99.9 99.9
EfficientNet B0 [25] 55.6M 91.8 99.0 99.0 94.7 99.9 99.6
EfficientNet B6 [25] 95.5M 99.4 99.0 99.0 96.5 99.9 99.6
MSPN 2-stg [26] 104.6M 97.8 99.0 99.0 99.0 99.9 99.9
TransPose R [19] 4.74M 98.2 100 99.9 98.9 100 99.9
ViPose (Ours) 11.2M 98.4 99.0 99.0 97.5 100 100

The annotation method and data structure employed in the
DriPE dataset are identical to those used in MSCOCO.

Following [19], we evaluate the model with the mAP metric
[24], as well as average precision (AP), and average recall
(AR). AP0.5 and AP0.75 are the AP with 50% and 75%
minimum of Intersection over Union(IoU) respectively. AR0.5
and AR0.75 are the AR with 50% and 75% minimum of IoU.
During the evaluation process, only the data points deemed to
be present in the keypoints are included in the results, whereas
the points believed to be absent from the image are not taken
into account.

C. Model Training Details

We trained our model with Intel® Xeon® W-2295 CPU
and a single Nvidia® GeForce® RTX2080Ti GPU, with 11GB
VRAM. The batch size is set to 20. The first training stage
includes 230 epochs, with an initial learning rate of 1e-4 and
a decay factor of 0.25 for each 5 epochs. To avoid overfitting
the model, we set the dropout rate to 0.1.

After the initial training phase, we adjust the learning rate
to begin at 1e-5, gradually decaying to 1e-6 by the end of the
fine-tuning phase.

V. EXPERIMENTAL RESULT

We evaluate ViPose on both MSCOCO and DriPE datasets,
comparing its performance with other HPE models.

A. Comparative experimental results on MSCOCO dataset

Experimental results on MSCOCO are listed in Table I.
We compare ViPose to SimpleBaseline [21], HRNet [22],
DarkPose [23], and TransPose R [19]. ViPose outperforms
most existing methods in terms of AP in Table I. Although
the AP of ViPose is slightly lower than that of DarkPose [23],
ViPose achieves this with significantly fewer parameters, ap-
proximately 14.7% of those required by DarkPose. The results

indicate that ViPose can achieve comparable performance with
much less computational complexity.

B. Comparative experimental results on DriPE dataset

To further verify the effectiveness of the proposed ViPose
method, we evaluate it on the DriPE dataset. The results are
shown in Table II. We compare ViPose with four existing
methods: SBI [24], EfficientNet [25], MSPN 2-stg [26], and
TransPose R [19]. ViPose achieves competitive performance
on the DriPE dataset, scoring 98.4% AP, slightly lower than
EfficientNet B6 [25], but is 8.53 times more efficient. These
results highlight ViPose’s potential in real-world applications.

C. Ablation study on different α values

We experiment with varying α values from 0,0.1,0.2,0.3
and compare the results. Table III and Table IV demonstrate
the comparative analysis.

TABLE III: Comparison of the performance with different
α values on the MSCOCO dataset.

α AP AP0.5 AP0.75 AR AR0.5 AR0.75

0 75.1 92.6 82.6 77.8 93.2 84.1
0.1 75.1 92.5 81.6 77.8 93.2 83.8
0.2 75.2 92.5 82.6 77.9 93.4 84.3
0.3 74.4 92.5 81.4 77.1 93.2 83.0

From the results, we can see that the model exhibits the
best performance when α is set to 0.2 on the MSCOCO
dataset and 0.1 on the DriPE dataset. It is noteworthy that
the performance drop is more pronounced as α increases,
indicating the importance of balancing pose estimation and
keypoint visibility detection. An optimal α value is critical to
achieving good performance.
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Fig. 2: Some samples of prediction result on the MSCOCO val2017 dataset.

Fig. 3: Some samples of prediction results on the DriPE test dataset.

TABLE IV: Comparison of the performance with different
α values on the DriPE dataset.

α AP AP0.5 AP0.75 AR AR0.5 AR0.75

0 98.2 100 99.9 98.9 100 99.9
0.1 98.4 100 100 99.0 100 100
0.2 95.9 99.0 99.0 97.4 99.8 99.5
0.3 96.2 99.0 99.0 97.5 99.8 99.5

D. Visualization results and analysis

We utilize COCOAPI to visualize the results predicted on
the MSCOCO and the DriPE datasets.

As shown in Fig. 2, the diverse range of human activities
and varying conditions in the MSCOCO dataset increases the
complexity of pose estimation. Despite this, ViPose success-
fully estimates human poses, demonstrating its adaptability to
diverse and challenging environments.

Fig. 3 shows the results on DriPE dataset on a car cabin
environment with a driver in the driving seat. While the pose
complexity is lower than that in MSCOCO, DriPE presents
challenges with serious occlusions of body parts. Despite these
challenges, ViPose achieves surpassing performance, indicat-
ing its robustness and suitability for real-world applications.

VI. CONCLUSION

In this paper, we focus on the occlusion problem of the
human pose estimation task and propose a visibility-guided
human pose estimation model, named ViPose. Parallel to
the HPE keypoint coordinate predictor, the keypoint visi-
bility detector can determine the keypoints of the visible
human body, slightly occluded or out of range. By combining
the visibility detector and coordinate predictor, ViPose can

improve prediction accuracy for the traditional HPE task.
The ViPose model is initially trained and evaluated on the
MSCOCO dataset, which is recognized as a benchmark dataset
for keypoint detection. To further evaluate the effectiveness of
ViPose, we evaluate ViPose on driver pose estimation tasks
for vehicle cabin monitoring applications. Experimental results
on the DriPE dataset illustrate that ViPose can achieve good
performance in different applications while requiring fewer
parameters.
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