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Abstract—In this paper, we propose a lightweight and real-
time capable variant of the TransUNet model for disaster area
semantic segmentation tasks, optimized for deployment on edge
devices. While traditional TransUNet models have demonstrated
performance in medical image segmentation, their size and
complexity hinder real-time inference on resource-constrained
platforms. To address this limitation, we used pre-trained R-ViT-
Ti 16 model for the encoder part which maintains competitive
performance despite a smaller model size. Additionally, we
added an extra layer to the decoder and utilized only one skip
connection to further reduce complexity. Several experiments
were conducted to refine the model, including comparisons of
different Vision Transformer (ViT) models, optimizers, loss func-
tions, and activation functions. Our results demonstrated that
the combination of R-ViT-Ti 16 with SGD optimizer, Log-Cosh
Dice loss, and TanhExp activation function yielded a compact
model with 87.5% of the performance of the baseline TransUNet
while using only 13% of the model size. The final model was
compressed using TensorRT; however, this step introduced signifi-
cant performance degradation, indicating limitations in achieving
real-time efficiency with this particular setup. This research
highlights both the potential and the challenges of deploying
highly efficient segmentation models on edge devices, suggesting
the need for further optimization to balance performance and
resource efficiency in real-time applications.

Index Terms—Unmanned aerial vehicle(UAV), Semantic Seg-
mentation, Vision Transformer(ViT), Model Compression, Real-
Time Performance

I. INTRODUCTION

Recent advancements in technology have significantly en-
hanced the role of unmanned aerial vehicles (UAVs) across
various industries, with their utilization in disaster relief be-
coming increasingly prominent. UAVs are highly useful for
real-time data collection and supporting rescue operations in
disaster scenarios. UAVs provide real-time data collection and
damage assessment during disaster situations, enabling rapid
and efficient responses to large-scale emergencies. UAVs play
a crucial role in quickly and accurately assessing the state of

affected areas and providing essential information to rescue
teams, which is particularly evident in major natural disasters.

UAVs have become essential tools for rapidly and efficiently
assessing damage and providing necessary information to
rescue teams in large-scale disaster situations. UAVs play a
critical role in monitoring disaster-stricken areas and support-
ing rescue operations, facilitating effective disaster response
through timely and accurate information. The technological
advantages and practical applications of semantic segmenta-
tion to UAVs significantly contribute to improving the effi-
ciency of disaster management.

However, semantic segmentation on UAV still faces sev-
eral technical challenges, including power supply issues, pro-
cessing capability limitations, and unreliable communication
channels. These technical constraints remain a significant
challenge, particularly for real-time response in disaster area
segmentation. Therefore, there is a need to develop models that
improve UAVs’ real-time processing capabilities and operate
effectively in resource-constrained environments.

Recent developments in Transformer-based models have
shown excellent performance in image segmentation tasks,
with various attempts to implement these models on small
devices. TransUNet [1], originally used for medical image
segmentation, combines the U-Net architecture with Trans-
formers to effectively segment complex anatomical structures.
TransUNet achieved an average Dice Similarity Coefficient
(DSC) of 77.48% on the Harvard ”Synapse multi-organ seg-
mentation” dataset, surpassing the performance of traditional
U-Net and U-Net++ models [1]. This performance highlights
TransUNet’s usefulness in medical image analysis. In this
study, we apply TransUNet to image segmentation tasks in
disaster areas and aim to make the model suitable for use in
resource-constrained environments by reducing its size.

We propose a modified TransUNet model that uses a R-ViT-
Ti 16 as the encoder, reduces the number of skip connections,
and incorporates the TanhExp activation function along with
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Log-Cosh Dice Loss. This model retains 87.5% of the baseline
TransUNet’s performance while reducing the model size to
13%. However, real-time inference on the Jetson Orin Nano
using TensorRT did not meet expectations. These results
demonstrate both the potential and challenges of applying
complex models in resource-constrained environments and
indicate areas for further improvement.

II. RELATED WORKS

A. TransUnet

Chen et al., 2021, proposed a novel model [1] that integrates
both Transformers and U-Net [2] architectures for medical
image segmentation. Traditional CNN/FCN-based medical im-
age segmentation models have limitations in global context
modeling. To address this issue, TransUNet was developed
as a segmentation model leveraging transformers, which were
initially designed for machine translation and have achieved
state-of-the-art performance in numerous NLP tasks. This
model builds upon the established U-Net structure.

While transformers are effective for global context modeling
in image and video segmentation, when used alone, they
often lack sufficient capability for capturing local context,
which can restrict their performance. Conversely, CNN-based
architectures such as U-Net excel in local context modeling but
have limitations in global context representation. TransUNet
is proposed as a hybrid architecture that capitalizes on the
strengths of both U-Net and transformers, effectively combin-
ing their advantages in local and global context modeling.

TransUNet has demonstrated success in medical image
segmentation by integrating convolutional layers with trans-
former architectures. Specifically, on the Synapse multi-organ
segmentation dataset, TransUNet achieved a Dice Similarity
Coefficient (DSC) of 77.48%, significantly outperforming tra-
ditional U-Net models. Additionally, TransUNet reported a
Hausdorff Distance (HD) of 31.69 mm, indicating superior
boundary delineation compared to other models. The model
also excelled in segmenting specific organs, achieving a DSC
of 87.23% for the aorta and 94.08% for the liver, underscoring
its capability to accurately capture both global and local
contextual information.

However, one limitation is its reliance on large models like
ViT-B, which makes it resource-intensive and less suitable
for edge devices with limited computational capacity. This
highlights the need for a more lightweight and efficient archi-
tecture that can run on edge devices while maintaining strong
performance in semantic segmentation.

B. Vision Transformer(ViT)

Transformer is a model used for sequence modeling in
natural language processing tasks. Based on the attention
mechanism, the global dependency of the sequence can be
modeled. ViT recently expanded the Transformer architec-
ture to the different computer vision tasks. In general, ViT
produces similar or lower performance than ResNet-based
models that previously achieved state-of-the-art in computer
vision task. However when the models are trained on larger

datasets Transformers can obtain better inductive bias. The
best model reached accuracy of 88.55% on ImageNet, 90.72%
on ImageNet-Real, and 94.55% on CIFAR-100 [3]. Despite
this remarkable performance, their typical use of large model
sizes (e.g., ViT-B, ViT-L) can be a significant drawback when
deployed in resource-constrained environments. Recent efforts
towards developing smaller versions of ViT, such as R-ViT-
Ti 16, present a promising direction for creating lightweight,
high-performance models suitable for edge computing.

Transformer architectures have primarily been used with
in natural language processing tasks, but have recently been
applied effectively in vision tasks such as image segmentation.
This transformer-based image segmentation study enables the
capture of global information and effective feature learning.

C. TensorRT

TensorRT [4] is a model optimization engine for high-
performance deep learning inference on NVIDIA GPUs using
techniques such as quantization, layer and tensor fusion,
kernel tuning. TensorRT supports 32-bit, 16-bit floating point
and 8-bit quantized floating point precision. By using lower
precision, memory usage and computation cost can be reduced,
but the accuracy can be decreased. To solve this problem,
TensorRT provides calibration. For these reasons, TensorRT
is used to make a low precision with high accuracy model for
edge devices such as Jetson Orin Nano.

D. Semantic Segmentation in Disaster Area

Image segmentation plays an important role in disaster-
related fields, and various studies have been conducted for
this purpose. Mainly CNN-based methods or traditional image
segmentation techniques have been applied to segmentation
of disaster area images. Semantic segmentation is effective in
recognizing disaster areas and establishing countermeasures
in disaster areas. According to the Nur Atirah Muhadi et al
[5], accurate water levels are measured by real-time moni-
toring of water level fluctuations in flooded areas through
semantic segmentation based on CNN. When using water level
gauges and ultrasonic sensors, which are existing water level
measurement methods, installation and maintenance Mainte-
nance costs increase. However, since surveillance cameras are
already installed in many places, economic benefits can be
pursued through semantic segmentation using cameras. This
study promotes efficient resource distribution and disaster
area recognition in disaster areas by performing semantic
segmentation of real-time disaster area images using UAVs,
rather than surveillance cameras.

In disaster scenarios, instant and real-time inspection is
crucial for effective response and decision-making. Therefore,
achieving real-time semantic segmentation is of paramount
importance. While TransUNet has proven effective in medical
imaging, it is not well-suited for disaster area inspection due
to its relatively large parameter count of 105 million. This
makes the model less optimal for deployment on edge devices
where computational resources are constrained. To address the
demands of real-time disaster area segmentation there is a need
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Fig. 1. Model Structure

for more compact models that can still deliver high accuracy,
making them viable for use on edge devices.

III. METHODOLOGY

The architecture of the model to solve this problem is
illustrated in Fig. 1. It utilizes R-ViT-Ti 16 as an encoder part,
Log-Cosh Dice Loss and Cross Entropy as a loss function,
TanExp as an activation function in convolution layer, SGD
as an optimizer.

A. Network Architecture

In our modified TransUNet we used the R-ViT-Ti 16 model,
chosen for its compact size and effective residual modules.
This choice aligns with our goal of developing a lightweight
model that retains competitive performance. The R-ViT-
Ti 16’s smaller footprint, combined with its efficient design,
enables significant reduction in model size while preserving
essential features necessary for accurate segmentation.

B. Skip Connection

The basic TransUNet utilizes three skip connections to inte-
grate features from different levels of the network, enhancing
the detail and accuracy of the segmentation output. However,
to mitigate the increase in model size and complexity, we used
a single skip connection. This strategic reduction in the number
of skip connections helps maintain a balance between model
complexity and computational efficiency, ensuring that the
model remains practical for real-time applications on resource-
constrained devices.

C. Decoder

For the decoder part, we added an additional upsampling
layer to further enhance the resolution of the segmentation
output. This additional step is important for refining the details
in the final segmentation maps. By increasing the resolution of
the decoder’s output, we can achieve more precise and detailed
segmentations, which is particularly important for high-quality
image segmentation in practical applications.

D. Activation Function

Tanh Exponential(TanhExp) [6] is an activation function
which can improve the performance for lightweight neural
networks. It is defined as the following equation.

f(x) = x tanh(ex) (1)

TanhExp has a similar figure to the other activation functions
such as Mish [7] and Smish, but it requires less calculation. It
also shows a steeper gradient near zero that can accelerate
convergence of the network than others. We replaced the
ReLU [8] activation function with TanhExp in our model. This
substitution is driven by the need for improved non-linearity
modeling and better stability during training. TanhExp offers a
smoother gradient and reduces the likelihood of issues related
to activation saturation, which can be beneficial in lightweight
networks where maintaining stable and effective learning is
crucial. This choice enhances the model’s overall learning
efficiency and performance.

E. Loss Function

1) Dice loss: The Dice score coefficient(DSC) [9] is used
to assess segmentation performance when a ground truth is
available by measuring how much the ground truth and a
prediction are overlapped.

Using DSC, Dice loss has been devised as a loss function
and it is defined as the following equation. R is a ground
truth with voxel values rn and P is a prediction with image
elements pn. The term is used here to avoid the numerical
issue of dividing by 0.

DL(P,R) = 1−
N∑

n=1
pnrn+ϵ

N∑
n=1

pn+rn+ϵ

−
N∑

n=1
(1−pn)(1−rn)+ϵ

N∑
n=1

2−pn−rn+ϵ

(2)

2) Log-Cosh Dice Loss: The Log-Cosh Dice loss is a loss
function using the Log-Cosh approach with Dice Loss [9].
It was proposed for its tractable nature while containing the
features of the dice coefficient. Log-Cosh Dice Loss is defined
as the following equation.

Llc−dce = log(cosh(DiceLoss)) (3)

This function remains continuous and finite after its first
derivative, ensuring smoother gradients and more stable op-
timization during training. It encapsulates the key features
of the Dice coefficient, making it well-suited for tasks like
segmentation where class imbalance is a concern. By intro-
ducing the Log-Cosh function, the loss is less sensitive to
large variations in the input, which can help prevent gradient
explosions or vanishing gradients. This leads to more robust
training, especially in scenarios where rapid changes in the
predicted outputs might otherwise destabilize the learning
process.

We used Log-Cosh Dice Loss due to its advantages in
segmentation tasks, especially for lightweight models. This
loss function combines the benefits of the Dice coefficient
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with a log-cosh penalty, which helps in handling outliers and
stabilizing the training process. By smoothing the differences
between predicted and true values, Log-Cosh Dice Loss en-
sures that the model converges effectively, providing robust
segmentation results while accommodating the constraints of
a compact model. Also we utilized Cross Entropy Loss for
balancing the segmentation task between the classes.

F. Optimizer

Among the various optimization techniques explored,
Stochastic Gradient Descent(SGD) proved to be the most
effective. SGD is favored for its simplicity, efficiency, and
robustness. It provides stable convergence and performs well
in scenarios involving lightweight models. The choice of
SGD aligns with our objectives of optimizing performance
while managing computational resources, ensuring that the
model meets the requirements for real-time inference on edge
devices.

IV. IMPLEMENTATION

The implementation of our model involved several stages,
including training setup, model compression and deployment.

A. Training Configuration

The training process was configured with specific parame-
ters to ensure effective model training and convergence. For
the training configuration, we set the learning rate at 0.01.
The batch size was set to 24 to balance memory usage and
training stability. The number of epochs was set to 200 to
provide sufficient training time for the model to learn from the
data. While we initially intended to experiment with different
hyperparameter settings, constraints on time and resources
necessitated the use of fixed values for these parameters.
Instead, the focus was directed towards evaluating different
activation functions, loss functions, and ViT sizes.

B. Pre-trained Model Utilization

We utilized the pre-trained R-ViT-Ti 16 model as the en-
coder component of our modified TransUNet architecture.
This pre-trained model was selected for it’s efficient feature
extraction capabilities and compact size. The integration pro-
cess involved incorporating the pre-trained weights into the
encoder, allowing the model to leverage previously learned
features.

C. Compression and Deployment

To optimize the model for real-time inference on the Jetson
Orin Nano, we used fp16 method from TensorRT for model
compression. The model was converted into a TensorRT-
optimized format, which involved reducing precision, merging
layers, and optimizing operations to enhance inference speed
and efficiency. After compression, the model was deployed on
the Jetson Orin Nano. We addressed various challenges during
deployment to ensure that the model performed efficiently
within the constraints of the edge device.

Fig. 2. Performance test by ViT models

V. EXPERIMENT

A. Dataset

The input to our method is an UAV-view disaster image
I associated with 14 semantic categories based on a dataset
provided from Low-Power Computer Vision Challenge(LPCV)
2023 [10]. The study used these images to train our own
model.

B. Experiment Setup

All experiments were conducted using the LPCV dataset,
which consists of UAV-captured imagery of disaster-affected
areas. Our objective was to develop a model that could perform
accurate segmentation while maintaining real-time processing
capabilities on the Jetson Orin Nano. We structured our
experiments into four aspects, progressively testing different
configurations to achieve optimal performance. The setup were
evaluated based on average mean dice score function from
LPCV 2023 [10].

1) Model Size vs. Performance (ViT Variants): We first
explored the impact of different Vision Transformer (ViT)
models on segmentation performance. For these tests, we
kept the optimizer (SGD) and the loss function (Dice Loss
+ Cross Entropy) consistent, changing only the ViT model
in the encoder. The small R-ViT-Ti 16 model, despite its
reduced size, showed competitive performance, making it a
viable candidate for our lightweight model which is shown in
the Fig. 2.

2) Optimizer Comparison: We fixed the ViT model (R-
ViT-Ti 16) and Dice Loss while experimenting with various
optimizers, including ADAMW, ADAM, SGD, and LION.
Among these, SGD provided the best overall performance,
striking a balance between training stability and final accuracy,
and was selected for further experiments. The results can be
checked in the Fig. 3.

3) Loss Function Experimentation: With the R-ViT-Ti 16
and SGD fixed, we compared the performance of two loss
functions: Dice Loss and Log-Cosh Dice Loss. While the
results were similar in terms of segmentation accuracy, the
Log-Cosh Dice Loss demonstrated potential advantages in
terms of model stability and gradient smoothness, leading us
to select it as the primary loss function due to its suitability
for lightweight models.
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Fig. 3. Performance test by Optimizers

Fig. 4. Performance test by Loss Functions

4) Activation Function Substitution: Finally, we replaced
the traditional ReLU activation function with the TanhExp
function in an effort to further reduce the model size and
improve computational efficiency. Our experiments showed no
significant loss in performance with this substitution, making
TanhExp a favorable alternative for resource-constrained en-
vironments.

C. Model Performance

After selecting the final configuration (R-ViT-Ti 16, SGD,
Log-Cosh Dice Loss, TanhExp), we compared the performance
of our modified TransUNet with the baseline TransUNet (R50-
ViT-B 16, SGD, Dice Loss). Our model achieved 87.5% of
the baseline performance while reducing the model size to

Fig. 5. Performance test by Activation Function

Fig. 6. Our Model VS TransUNet VS UNet

just 13% of the original, illustrating its effectiveness for UAV-
captured disaster area segmentation tasks.

D. Real-Time Deployment

Despite achieving satisfactory segmentation performance
during offline testing, our model encountered significant chal-
lenges when deployed on the Jetson Orin Nano. After com-
pressing the model using TensorRT, we observed that the
model was unable to perform real-time inference, resulting in a
black screen output. This highlighted the limitations of current
model compression techniques for edge devices, suggesting
the need for further optimization and refinement.

VI. CONCLUSION

In this work, we presented a modified version of TransUNet
designed for UAV-captured disaster area segmentation with a
focus on real-time deployment on edge devices such as Jetson
Orin Nano. Our approach utilized a lightweight R-ViT-Ti 16
model as the encoder, a simplified decoder with fewer skip
connections, and TanhExp as the activation function. We also
employed Log-Cosh Dice Loss to optimize performance while
maintaining model efficiency.

Through a series of experiments, we demonstrated that our
modified model achieved 87.5% of the baseline performance
while reducing the model size to only 13% of the origi-
nal TransUNet. This significant reduction in size highlights
the potential for deploying efficient segmentation models in
resource-constrained environments.

However, despite these promising results, our efforts to
deploy the model in real-time on the Jetson Orin Nano revealed
substantial challenges. After compressing the model using
TensorRT, the model failed to perform effectively during infer-
ence, resulting in a black screen. This outcome underscores the
limitations of current model compression techniques and the
need for further research into optimization strategies that can
maintain both performance and functionality on edge devices.

In future work, we aim to explore advanced compression
and optimization techniques, refine the model architecture
further, and improve real-time inference performance on em-
bedded devices. Our findings offer valuable insights into the
trade-offs between model size, performance, and deployment
feasibility, paving the way for more robust real-time segmenta-
tion solutions in UAV-based disaster management applications.
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