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Abstract—With advancements in architecture and open-source
foundation models extracting general knowledge, many develop-
ers are leveraging deep learning (DL) as application services.
To coduct computation-intensive matrix operations, hardware
resources with numerous parallel cores have also seen significant
progress. Due to the high operational costs of such resources,
efficient processing of DL tasks has become crucial for computing
resource providers. Most studies on resource management for
DL inference tasks focus on adjusting batch sizes to control the
efficiency of a resource. Different from training tasks, however,
inference processing uses relatively few internal resources, such as
parallel cores and memory units. Consequently, a single inference
task often fails to fully utilize the resource. Moreover, the latency
prediction model, which is linearly proportional to batch size,
still has limitations with small batch sizes and diverse archi-
tectures. In this paper, we introduce a novel GPU scheduler to
improve processing efficiency by partitioning internal resources
and executing multiple tasks simultaneously in a single GPU.
Our latency model considers the internal kernel operation distri-
bution, enabling precise prediction even in small batch sizes. By
adjusting both batch size and usage ratio of internal resources the
proposed scheduler can achieve the coexistence of multi-tenant
DL tasks effectively. Experimental evaluations demonstrate that
our approach achieves higher throughput and power efficiency
compared to conventional scheduling mechanisms.

Index Terms—deep learning, scheduling, GPU

I. INTRODUCTION

The rapid advancements in the layered architecture [1]–
[6] and the availability of pre-trained models with large-
scale open datasets have significantly encouraged developers
to leverage deep learning (DL) models for a variety of ap-
plication services. Concurrently, hardware resources such as
GPUs, FPGAs, and ASICs, which are designed to handle
computation-intensive matrix operations, particularly those
utilizing numerous parallel cores, have achieved high compu-
tational power. These single instruction multiple data (SIMD)
cores can efficiently process large-scale matrix multiply-and-
accumulate (MAC) operations in parallel. However, such hard-
ware often incurs high operational costs, not only due to power
consumption but also because of the substantial expenses of
the hardware resources themselves. Meanwhile, the number
of DL services is growing explosively, necessitating resources
that can efficiently handle increasing user requests. Therefore,
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for service providers offering computing resources for DL,
such as data centers, the primary objective is to efficiently
accommodate multi-tenant DL services and manage their
processing effectively.
Conventional approaches [7], [8] to resource management for
DL inference tasks mainly focus on adjusting batch sizes to
control the processing efficiency (i.e., utilization of parallel
cores) of a resource. Increasing the batch size, which refers
to the number of inputs processed at once, leads to higher
amounts of matrix computation, thereby better exploiting the
parallel cores. Although this is effective in managing DL
services when scheduling, there are still limitations. The batch
size, highly related to memory consumption during runtime, is
constrained by off-chip memory capacity and latency service
level objectives (SLOs), potentially resulting in restricting
small batch size and underutilization of a resource. To address
this issue, recent libraries often support the simultaneous
execution of multiple tasks by partitioning internal resources
such as parallel cores and memory unit. Recent studies [9]–
[12] have actively explored scheduling mechanisms under
concurrent task execution.
In this paper, we introduce a novel GPU scheduler designed
to enhance processing efficiency with the partitioning of
internal resources, enabling the allocation of multi-tenant DL
tasks with various computational intensities. Our approach
includes an advanced latency prediction model that considers
the distribution of internal kernel operations by categoriz-
ing them into computation-intensive functions (MAC), and
memory-intensive functions (element-wise operations). Then,
the proposed scheduling engine determines the execution
configuration, including batch size and usage ratio, which
refers to the maximum portion of parallel cores participating
in processing. This enables the simultaneous co-location of
tasks with different architectures on the same GPU while
maximizing processing efficiency.
In this paper, we discuss conventional scheduling mechanisms
and observe the processing characteristics of different ker-
nel functions used in DL. Then, we describe novel latency
modeling and scheduling mechanisms under an environment
with multi-tenant DL tasks. Finally, we demonstrate the
effectiveness of the proposed scheduling approach through
comprehensive experimental evaluations.
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Fig. 1: Latency curve of computation-intensive kernels of
convolution according to the output channels (outchs) and
batch size of the input tensor

II. RELATED WORK AND PROBLEM DESCRIPTION

Traditional DL execution mechanisms involve dedicating all
internal resources to a single task. The conventional studies
regarding inference schedulers [7], [8], [10] have an allocation
strategy with only a single task per resource with limited
temporal multiplexing. On the other hand, recent libraries
[13], [14] have been released, which allow multiple tasks
to simultaneously employ internal resources via partitioning.
In response to these advancements, recent studies, such as
GSLICE [9] and gpu-let [12], have focused on how to split
internal resources among multiple DL tasks. They either de-
termine the usage ratio for partitions by adjusting in an online
manner or predicting interference among allocated tasks.

However, there is still a lack of sophisticated modeling for
latency prediction through detailed analysis of the internal
kernel behavior, which is necessary for accurate resource
allocation and multi-tenant DL architectures. It is composed
of a combination of numerous types of layers. In this paper,
we categorize them into computation-intensive kernels, which
the computational load is dominant compared to the memory
access of input and output data, and memory-intensive kernels
in the opposite case. The former typically includes layers
with matrix-matrix operations, while the latter usually con-
tains element-wise operations or normalization functions. This
categorization may achieve more precise latency modeling
regardless of the model itself. We observed the tendency of
these kernels to the batch size.

Fig. 1 shows that the latency of convolutional layers in-
creases exponentially with the batch size. This behavior is due
to the extensive matrix MAC operations. On the other hand,
Fig. 2 demonstrates that memory-intensive operations such as
batch normalization and ReLU. It implies that the latency is
linearly proportional to batch size, driven by data transfer rates

(a) (b)

Fig. 2: Latency curve of memory-intensive kernels according
to the width W, height H and batch size of the input tensor:
(a) batch normalization and (b) ReLU.

rather than arithmetic operations. We conduct the prediction
modeling for completion time combined with an exponential
and linear term, providing a foundational basis for efficient
scheduling described in the following section.

III. PROPOSED LATENCY-AWARE GPU SCHEDULER

A. Overall Architecture

In this section, we describe the overall architecture of the
proposed latency-aware GPU scheduler, which is designed for
multi-tenant DL services. Our scheduler can efficiently handle
multiple GPUs by partitioning internal resources, allowing
simultaneous execution of multiple DL tasks in a single
resource. There are several mechanisms for splitting internal
resources to allocate tasks, we assume the well-known method
[13] of dividing parallel cores and leaving memory units to be
shared over running tasks in this paper.

Fig. 3 represents an overall block diagram of the proposed
scheduler. It consists of two function blocks: the internal
resource-ware latency predictor and resource scheduler. The
latency predictor estimates the completion time of processing
a single batch of input requests while considering the kernel
distribution of DL architecture and interference of shared
resource units among concurrently running tasks, allowing the
scheduler to anticipate a potential slowdown. The scheduler
engine determines the execution configuration of partitions
including a batch size and usage ratio of internal resources and
the resource allocation strategy to maximize the processing
efficiency of given DL tasks.

B. Internal Resource-Aware Latency Model

In this section, we delve into the prediction model of
latency as the completion time of processing a single batch of
requests, which is a core component of scheduling decisions.
It considers not only the characteristics of kernels of layer
operations in a target model but also accurate prediction when
the task is executed in partial usage of parallel cores in GPU.
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Fig. 3: Overall architecture of latency-aware GPU scheduler
for multi-tenant DL inference services based on internal re-
source partitioning.

For a given DL task and a resource, we refer base time,
tbase as the completion time of the model inference without
any interference from other tasks on the execution resources,
is given to Equation (1).

tbase = tqueue + tproc, (1)

where queue waiting time tqueue and processing time tproc.
During inference, computationally intensive kernels Kcomp

such as convolution and linear operations, as well as memory-
intensive kernels Kmem including element-wise and normal-
ization operations, are iteratively processed within the re-
sources. Then, we can represent the processing time tproc as a
function of the batch size b ∈ N and the usage ratio of internal
resources (i.e. SIMD parallel cores), 0 ≤ p ≤ 1 as follows.

tproc(b, p)

=






m∈Kcomp

tcomp
m (b) +


n∈Kmem

tmem
n (b)



 · d(p),

(2)

where tcomp
m (b) and tmem

n (b) are completion time for m-th
kernel in Kcomp and n-th kernel in Kmem, respectively. The
degradation ratio d(p) refers to the increase in completion time
caused by using only a portion of the internal resources. When
p=1, the degradation factor d(p) is 1, and as p approaches 0,

it increases. Note that due to the computational demands of
the model, the increase in d(p) is rarely until a certain point
of p, but if it falls below that, the completion time increases
sharply. Therefore, we can represent d(p) with an exponential
term of p with coefficients ξ and κ.

d(p) ≈ eξ(1−p)κ . (3)

Meanwhile, it is impossible to accurately predict the individual
completion times for tens of thousands of invoked kernels
(Kcomp ∪ Kmem). Instead, we estimate the total completion
time based on the characteristics of the layers of the given
model and the batch size b, as shown in Equation (4).


m∈Kcomp

tcomp
m (b)+


n∈Kmem

tmem
n (b)

≈


b+ α

eβ·b+γ
+ (δ · b+ ω)


,

(4)

where (α, β, γ) and (δ, ω) are regression coefficients for
computation-intensive kernels Kcomp and memory-intensive
kernels Kmem, respectively. Then, we can derive the prediction
function for processing time tproc(b, p) using Equation (5).

tproc(b, p) =


b+ α

eβ·b+γ
+ (δ · b+ ω)


· eξ(1−p)κ . (5)

Since we assume that processing time tproc(b, p) is almost
deterministic for a given b and p, we can exploit the M/D/1
queueing model to estimate the queue waiting time tqueue.
Note that the processing is conducted in a batching manner
effective arrival rate becomes λ

b in the system’s perspective
even though the arrival rate of a request is λ. Then we can
derive tqueue(λ, b, p) as Equation (6).

tqueue(λ, b, p) =
λ · (tproc(b, p))2

2 (b− λ · tproc(b, p))
. (6)

Note that tbase implies the completion time when no other
tasks are running on the resource. Let X as the set of tasks
running simultaneously on a resource. Then, the completion
time can be derived as the Equation (7).

X = {i|i-th DL model running on a resource},
tcon(λ, b, p;X)= tqueue(λ, b, p) + tproc(b, p) ·(1+I(X)),

(7)
where interference factor I(X) ∈ R represents the overhead
ratio due to contention of internal resources over running tasks.
Inspired by gpu-let [12], we define it as the weighted sum of
DRAM and L2 cache utilization of all tasks in an MPS [13]-
based concurrent execution environment. Based on the latency
modeling from above, we can derive the throughput of a task,
as follows.

h(λ, b, p;X) =
b

tcon(λ, b, p;X)
. (8)
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Algorithm 1 Heuristics for Scheduling Algorithm on Multi-
Tenant DL Tasks
Require: Set of inference services S = {S1, S2, ..., SN},

Number of GPUs M
Ensure: Execution configuration C = {C1, C2, ..., CN}, Re-

source allocation strategy X = {X1, X2, ..., XM}
1: Initialize C with maximizing b/tbase

2: Measure memory requirement of all services under C
3: Initialize X satisfying memory capacity
4: repeat
5: for each GPU j do
6: Calculate interference factor I(Xj)
7: for each task i on GPU j do
8: Calculate Ti(Ci, Xj)
9: Check Ti(Ci, Xj) ≤ Li and bi

Ti(Ci,Xj)
≥ λi

10: Adjust bi and pi to improve Ei(Ci, Xj)
11: end for
12: end for
13: Adjust X satisfying memory capacity
14: until convergence or maximum iterations
15: return C and X

C. Problem Statement for GPU Scheduling

In the previous section, we discuss the latency modeling of
a DL task when multiple tasks are simultaneously running in
GPU. This section describes the detailed scheduling problem
of multi-tenant DL tasks.

At the time of the scheduling decision, there are N inference
services S = {S1, S2, ..., SN} and i-th service Si has the
following attributes:

Si =< λi, Li >, (9)

where λi is an arrival rate of request and Li is a latency
SLO. In a computing environment handling these services,
we assume M homogeneous GPUs as resources for simplicity.
Our scheduler should decide the execution configuration C=
{C1, C2, ..., CN} over S and the resource allocation strategy
X={X1, X2, ..., XM} over M GPUs. The execution config-
uration of i-th service, Ci =<bi, pi>, includes the batch size
of bi and usage ratio of parallel cores pi. And, the resource
allocation strategy of j-th GPU, Xj = {xj,1, xj,2, ..., xj,N}, is
represented by N -dimensional binary vector which xj,k = 1 if
k-th service is executed on j-th resource, otherwise 0. Then the
completion time for a single batching of i-th service executed
in j-th GPU under Ci and Xj is defined as:

Ti(Ci, Xj) := tcon(λ, b, p;X)|λ=λi,(b,p)=(bi,pi),X=Xj
. (10)

Note that our scheduling objective is to enhance the pro-
cessing efficiency of the overall service workers running on
available GPUs by partitioning the internal parallel cores
of GPU (i.e. usage ratio). Therefore, we define processing
efficiency, Ei(Ci, Xj), as the throughput (samples/sec) per
unit of parallel cores for the i-th service under the execution

Fig. 4: Processing time prediction for varying batch sizes:
measured data (black dot), the linear modeling (blue line) and
the proposed modeling (red line).

configuration Ci and the concurrently running tasks in j-th
GPU Xj .

Ei(Ci, Xj) :=
1

pi
· bi
Ti(Ci, Xj)

. (11)

We begin by formulating the optimization problem of the
proposed scheduler. The objective function is to maximize
overall processing efficiency while meeting the latency SLOs.

argmax
C,X

∑
(Ci,Xj)∈(C,X)

Ei(Ci, Xj) (12)

s.t. Ti(Ci, Xj) ≤ Li, ∀i ∈ {1, 2, ..., N}, (13)
bi

Ti(Ci, Xj)
≥ λi, ∀i ∈ {1, 2, ..., N}, (14)

M∑
j=1

xj,k = 1, ∀k ∈ {1, 2, ..., N}, (15)

The constraints include a guarantee of latency SLO Li, queue
stable condition, and that a service worker can only be
created in a single GPU space. This stems from the common
characteristic that inference processing does not require high
computational resources of more than one GPU different from
training. Due to the complexity of the scheduling problem,
we provide an overview of heuristic methods used in the
scheduling process, as described in Algorithm 1.

It initializes the execution configuration (batch size and
usage ratio of internal resources) by maximizing the through-
put b/tbase when no other tasks are running in GPU. After
measuring the memory requirement of tasks, it initializes the
resource allocation strategy by allocating tasks into M GPUs.
Then, The interference factor for each GPU is calculated
by Equation (10), and execution configurations are iteratively
adjusted to satisfy the latency SLO and queue stable condition
depicted in Equation (13) and (14) and improve processing
efficiency. This adjustment repeats until convergence or a
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TABLE I: Performance evaluation of task scaling with respect
to scheduling mechanisms.

Running
Tasks

Power (W)
Throughput

(reqs/sec)
Used
GPUs

1 237.99 4328.71 1
2 475.98 8657.42 2
3 713.97 12986.13 3

no partition

4 951.96 17314.85 4

1 238.03 4325.86
2 261.07 5030.7
3 253.59 5000.43

w/ partition
(base)

4 272.11 5086.19

1

1 238.31 4326.22
2 277.15 5361.26
3 273.48 5278.5

w/ partition
(proposed)

4 290.26 5621.81

1

maximum number of iterations is reached, ensuring efficient
GPU scheduling.

IV. PERFORMANCE EVALUATION AND DISCUSSION

We conducted performance evaluations in our computing
environment to observe the effectiveness of the proposed
scheduler. Our experimental environment consists of servers
equipped with four NVIDIA RTX 4080 GPUs, each featuring
16,384 parallel CUDA cores and 24GB of GDDR6 off-chip
memory. They are interconnected via PCIe Gen3 x16 lanes.
The host system is powered by an Intel 16-core Xeon Silver
4214R CPU running at 2.4GHz. We measured the performance
of the proposed scheduling method (w/ partition(proposed)),
which controls both batch size b and usage ratio p, against two
baseline methods: one that allocates a single service per GPU
and adjusts the batch size (no partition) [7], [8], and another
that partitions the GPU without controlling the usage ratio p
(w/ partition(base))) [13]

A. Evaluation of Latency Prediction and Task Scaling

We first evaluated the processing time prediction model in
Equation (4) and the resource efficiency when scaling the
number of tasks with ResNet image classification model [1].

Fig. 4 shows the fitting of prediction models to processing
times tproc obtained from 200 randomly sampled batches.
The conventional linear model used in [7], [8] assumes a
linear relationship between batch size and processing time,
resulting in a mean square error (MSE) of 6.57. On the other
hand, the proposed non-linear model, which incorporates a
non-linear relationship concerning computation-intensive and
memory-intensive kernel functions, provides a better fit with a
significantly lower MSE of 3.39. The non-linear model more
accurately captures the processing times, especially for smaller
batch sizes, and the sharp rise in processing times for larger
batch sizes, illustrating its superiority in predicting processing
times.

Fig. 5: Completion time with the proposed scheduling com-
pared to the base partition method for individual tasks. Note
that the latency SLO L = [50, 200, 40], respectively.

Fig. 6: Throughput (requests/sec) with the proposed scheduling
compared to the base partition method for individual tasks.

Table I demonstrates the impact of task scaling on GPU
requirements, power consumption, and throughput across dif-
ferent scheduling mechanisms. Without partitioning, as the
number of tasks increases from 1 to 4, the required GPUs
scale linearly from 1 to 4 GPUs, leading to a significant
rise in power consumption from 237.99 W to 951.96 W.
When partitioning is applied, both the base and proposed
methods maintain a constant hardware requirement of only
1 GPU, significantly reducing power consumption compared
to the no partition. Specifically, the proposed partitioning
method shows a slight improvement in power efficiency and
throughput compared to the base partitioning method, achiev-
ing a power consumption of 290.26 W and a throughput of
5621.81 reqs/sec for 4 concurrent tasks. The result implies
the efficiency of partitioning methods in maintaining lower
power consumption and GPU requirements while providing
competitive throughput.
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Fig. 7: Performance comparison between the proposed
scheduling control (b, p) and the base partition method with
fixed p: average power consumption (left) and total throughput
for assigned tasks (right).

B. Evaluation of Proposed Scheduling under Multiple Tasks

Next, we aim to build multi-tenant DL services to demon-
strate the effectiveness of the proposed scheduling. First, we
set up different tasks (image classification, language pro-
cessing) and prepared three model architectures (ResNet [1],
MobileNet-v3 [15], BERT [16]). In the previous no partition
approach, a single task could only be allocated to one GPU,
which requires significant amounts of GPUs. However, by
using the proposed partition method, all these tasks can be
processed in a single GPU. In this setup, we set the arrival
rates λ for each task to [200, 30, 600], and the latency SLOs
L to [50, 200, 40] ms, respectively.

Fig. 5 and Fig. 6 show the completion time tcon of
individual task depicted in Equation (7) and throughput of
Equation (8). The base method, which multiple tasks can be
executed without control of usage ratio p, fails to partition
the internal resources adaptively, resulting in limitations on
scheduling space of the batch size. Consequently, this leads to
lower throughput over tasks except for BERT. In contrast, the
proposed method adaptively partitions the internal resources
by considering the computational and memory characteristics
of each task by adjusting the usage ratio p. This adaptive
allocation enables better handling of diverse workloads on the
same GPU, achieving higher throughput while still meeting
the latency SLO.

Fig. 7 demonstrates the average power consumption and
total throughput over all tasks running in GPU. It implies that
the proposed scheduler shows superior efficiency compared to
the base partition method with a fixed p = 1. Specifically,
the proposed method significantly reduces average power
consumption, while increasing total throughput approximately
increased by 15.9%. This result implies that the proposed
method can appropriately allocate parallel cores based on the
computational demands of the tasks and the arrival rate of an
input service, thereby avoiding unnecessary contention among
multi-tenant DL tasks.

V. CONCLUSION

In this paper, we proposed a novel GPU scheduling strategy
designed to enhance the efficiency of DL inference tasks by
partitioning internal resources to enable concurrent task execu-
tion. Experimental evaluations demonstrated that the proposed
scheduling method improves processing efficiency, which
reduces average power consumption while increasing total
throughput compared to existing approaches. This is achieved
through a more effective utilization of GPU resources, allow-
ing multiple tasks to be processed on the same GPU without
compromising performance. The proposed scheduling mecha-
nism implies the potential of internal resource partitioning for
a scenario with multi-tenant DL services.
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