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Abstract—The necessity for a cohesive network that seamlessly
integrates various networks, technologies, and services is be-
coming increasingly pressing. By adopting innovative networking
solutions that unify these disparate networks, Hydra radio access
networks (H-RANs) embody a forward-looking approach that is
essential for navigating the complexities of the evolving digital
landscape. By integrating advanced communication and sensing
capabilities, as well as harnessing the power of artificial intelli-
gence/machine learning (AI/ML), H-RANs are set to redefine how
services are delivered and managed within modern telecommuni-
cations networks. This comprehensive strategy ensures that these
networks are not only current but also poised for future inno-
vations. Concurrently, reconfigurable intelligent surfaces (RISs)
are envisioned as programmable surface structures that control
electromagnetic wave reflection, thereby modifying the wireless
communication environment. Despite their advantages, a major
challenge for RIS technology lies in the high overhead associated
with beam alignment and channel estimation for MMW systems.
These conventional methods require extensive pilot signaling to
estimate channel state information (CSI) accurately, leading to
significant computational and operational burdens. This study
proposes a novel approach to accurately estimate RIS’s reflection
configurations (RCs) using real-time sensor data extracted from
sensor and radio units (SRUs) and AI/ML D-engine. This
method aims to enhance RIS functionality by providing precise
information that allows dynamic adjustments to RCs. Simulations
demonstrate that our approach significantly boosts network
performance, achieving high selection accuracy by achieving a
remarkable 95% selection accuracy using only five RC index
candidates.

Index Terms—Hydra radio access network (H-RAN), Multi-
functional networks, Perceptive networks, Heterogeneous data,
AI/ML engines, Cooperative multi-sparse input/multi-task
learning-based federated learning (C-SMTL), Reconfigurable
intelligent surfaces (RISs), Reflection configurations (RCs).
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government (MSIT) (No.RS-2024-00397216, Development of the Upper-mid
Band Extreme massive MIMO(E-MIMO), 50%) and the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No.2022R1A5A1027646, Augmented Cognition Meta-Communications Re-
search Center, 50%.

I. INTRODUCTION

Indeed, conventional radio access networks (RANs) struggle
to adapt to rapid and frequent changes in network environ-
ments due to their inherent limitations. They often rely on
(a one-size-fits-all solution), which is static solutions and
lacks the sophisticated perceptive capabilities provided by
modern technologies, such as AI and sensors. This results
in a rigid approach that cannot effectively address the nu-
anced and dynamic nature of current networking demands
[1], [2]. Hydra radio access network’s (H-RAN’s) vision
is centered around the unification of diverse networks and
technologies, encompassing communication networks, sensor
networks, edge computing (EC), the internet of things (IoT),
artificial intelligence/machine learning (AI/ML), autonomous
driving (AD), vehicle-to-everything (V2X), etc. Ultimately,
the development of H-RANs as a cohesive operational frame-
work not only addresses current technological needs but also
prepares the infrastructure for future advancements. By fos-
tering an adaptable environment that leverages cutting-edge
technologies, H-RANs position themselves to support the con-
tinued evolution of wireless communication and connectivity
solutions [1], [2]. Moreover, incorporating dense sensor and
radio units (SRUs) within the H-RAN framework is essential
for developing dynamic and responsive networks capable of
adapting to modern connectivity needs. This is particularly
vital as technological advancements continue to push the
limits of network demands and expectations, particularly in
challenging millimeter-wave (MMW) environments [1]–[3].
MMW systems are characterized by significant propagation
losses which can be attributed to their high carrier frequencies.
In addition to propagation losses, MMW systems are highly
vulnerable to blockages caused by physical obstructions [3]–
[5]. On the other hand, reconfigurable intelligent surfaces
(RISs) are developed as programmable surface structures that
control electromagnetic wave reflection, thereby modifying the
wireless communication environment [6]–[8]. They achieve
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Figure 1: Hydra radio access networks (H-RAN) incorporate disaggregated sensor and radio units (SRUs) and reconfigurable
intelligent surfaces (RISs), streamlining heterogeneous network deployments. In these scenarios, the sensor data, including
parameters like location, allows SRUs to assess the current state of the wireless channel and make informed decisions about
the RIS configuration. The Hydra distributed unit (H-DU) only needs feedback on the optimal phase configuration index to the
RIS through the control link of the corresponding SRU. With the capability to reconfigure the RIS based on real-time sensor
data, H-RAN can enhance propagation conditions.

this by adjusting the electric and magnetic properties of
the surface, allowing for enhanced signal steering towards
intended receivers. While RIS technology promises significant
performance enhancements in MMW systems, making precise
beam alignment essential but challenging. Traditional beam
alignment and channel estimation methods present a consid-
erable challenge due to their high overhead, particularly in
dynamic environments where rapid CSI updates are required
[6]–[8]. This study proposes a novel approach to accurately
select the optimal reflection configurations (RCs) on RIS using
real-time sensor data extracted from SRUs. This method aims
to enhance RIS functionality by providing precise information
that allows dynamic adjustments to RCs through the AI/ML
D-engine [1], [2]. Simulations demonstrate that our approach

significantly enhances network performance, approaching high
selection accuracy. Furthermore, it achieves a remarkable 95%
RC selection accuracy while maintaining high efficiency.

II. NETWORK MODEL

In this paper, an RIS-aided H-RAN communication system
is investigated. As shown in Fig. 1, we consider an outdoor H-
RAN framework in which single-access cellular networks of
SRU are used, as well as RIS-aided multiple-input and single-
output communication systems, and an RIS controller. SRUs
are an integral part of H-RAN architectures, extending their
functionality beyond traditional communication tasks. They
serve as critical nodes that integrate sensing and communi-
cation capabilities. This dual capability enables the network
to process and analyze sensor data while facilitating reliable
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wireless communication to the adaptive and responsive net-
work environment [1], [2]. A single SRU can provide valuable
insights into the UE’s status, e.g., location, distance, velocity,
signal conditions, etc., enabling the network to assess and
respond to changes in real time. Meanwhile, as shown in
Fig. 1, we consider a RIS-assisted communication system
with N reflecting elements N = {1, 2, . . . , N} to assist
in downlink communication from an SRU with M antennas
M = {1, 2, . . . ,M} to single-antenna user equipment (UE).
The SRU antenna arrays and the RIS reflecting elements
are modeled as uniform linear arrays (ULA). The reflective
elements of the RIS are each connected to an atom that adjusts
the phase of each incident wave. To simplify the description
of the system, the positions of the BS, the RIS, and the UE are
indicated by a Cartesian coordinate system. The UE position
is extracted by SRU and represented by p = (px, py, pz)

T.
We assume that an SRU or collaborative SRU transmits UE
status information directly to the RIS through a control link. In
addition, it is assumed that the RIS phase shifts are estimated
by the Hydra distributed unit (H-DU) and transmitted to the
RIS controller via dedicated control channels [1], [2]. The
H-DU employs a hybrid precoding configuration, where each
RF chain is adapted to all available antennas, and transmits
Gaussian data symbols s = [s1, . . . , sK ]T ∈ CK×1 to the
users via a digital and analog precoding matrix.

Assuming the uplink transmission signal has a symbol s ∈
C, therefore, the received signal at the SRU after combining
can be written as

y = wHhs+wHn, (1)

where E
[
|s|2

]
= Ps is the transmitted symbol that satisfies

the average power constraint, n ∼ NC
(
0, σ2

nI
)

is the received
noise vector at the SRU, h ∈ CM×1 denotes the uplink
channel between the UE and the SRU, and w indicates the
SRU combining vector.

A. Channel Model

In addition, each RIS element is connected to a smart
RIS controller, which can independently adjust the phase
of incident signals. Furthermore, given the practical hard-
ware implementation, we presume the discrete phase shift
of {0, 2π} which is uniformly quantified by each RIS el-
ement. For each element, let {χ} refer to the number of
quantization bits. Accordingly, we have reflection coefficient
(RC) matrices set Θ = {ej0, ej∆θ, . . . , ej(2

q−1)∆θ}, where
∆θ = {2π/2χ} denotes the quantified interval. Let Γ =
{Γ1,Γ2, . . . ,ΓN}T ∈ CN×1 represent the RC vector, where
Γn ∈ Γ , n ∈ N refer to the RC of the nth RIS element. Let
Γ = diag({Γ1,Γ2, . . . ,ΓN}) ∈ CN×N denote the reflection
matrix of the RIS. Let hSRU

UE ∈ C1×M hSRU
RIS ∈ CM×R, and

hRIS
UE ∈ C1×N denote the complex baseband channel from

the SRU → UE, from the SRU → RIS, and from the RIS
→ UE, respectively. The Rician channel model [6] is used
to characterize wireless communication environments where
the received signal consists of a dominant LoS component,

along with multiple scattered NLoS components. This model
is particularly applicable in scenarios where a strong direct
path exists between the transmitter and receiver. The direct
channel SRU → UE hSRU

UE ∈ C1×M is generated by

hSRU
UE =

√
P1/ (K1 + 1)

(√
K1hSRU

UE (LoS) + hSRU
UE (NLoS)

)
, (2)

where hSRU
UE (LoS) and hSRU

UE (NLoS) are the LoS and NLoS com-
ponents of hSRU

UE , respectively. The NLoS component is mod-
eled by a complex Gaussian distribution hSRU

UE (NLoS) ∼
NC

(
0, σn2I

)
. PL and Kd denote the path loss and Rician

factor of the direct channel SRU → UE, respectively. Likewise,
the channels SRU → RIS (hSRU

RIS ) and RIS → UE (hRIS
UE ) are

generated similarly to (2).
{

hSRU
RIS = {

√
P2/ (K2 + 1)

(√
K2hSRU

RIS(LoS) + hSRU
RIS(NLoS)

)
},

hRIS
UE = {

√
P3/ (K3 + 1)

(√
K3hRIS

UE (LoS) + h RIS
UE (NLoS)

)
},

(3)

Accordingly, this complex downlink channel ĥ can be ex-
pressed as

ĥ = hSRU
UE + hSRU

RIS ΓhRIS
UE

= hSRU
UE + hSRU

RIS ΓT diag(hRIS
UE )

, (4)

where hSRU
UE ∈ CM×1, hSRU

RIS ∈ CM×N, and hRIS
UE ∈ CN×1,

indicate the channel from the SRU to the UE, from the SRU to
the RIS, and finally from the RIS to the UE, respectively. Γ =
diag({Γ1,Γ2, . . . ,ΓN}) ∈ CN×N refer to the RIS reflection
matrix which can be formulated as

Γ = diag
(
A1e

(jθ1), A2e
(jθ2), . . . , yne

(jθn)
)
, (5)

where θn ∈ (0, 2π) and An ∈ (0, 1) correspond to the
phase-shift and the amplitude coefficient for element n ∈
(1, 2, . . ., n), respectively. During signal reflection, when an
incoming signal s impinges on the RIS, the reflected signal r
can be described by

r = Γs, (6)

where s is the vector of the incoming signal components at
each RIS element. and r is the vector of the reflected signal
components.

III. SRU AND RIS STEERING VECTORS.

In this section, we illustrate an innovative approach that
leverages sensor data in SRU to estimate accurate RCs for
RIS. SRU can provide scene understanding and precise infor-
mation about the environment, including distances and relative
positions of objects, and distinguish between different types
of surfaces (e.g., reflective, absorption). The data collected
from SRU sensors can be analyzed to determine incidence
and reflection angles for incoming signals. The estimated RCs
derived from sensor data can be simulated to assess their ef-
fectiveness in improving signal quality. This entails analyzing
incidence and reflection angles to optimize signal paths within

556



the communication environment. We estimated the optimal
beam index for direct channel SRU → UE (hSRU

UE ∈ C1×M)
and SRU → RIS (hSRU

RIS ∈ CM×R) according to our previous
study in [2]. In this approach, the H-RAN draws upon sensor
data collected by SRU to define a small set of candidate beams
at the transmitter, each pointing in a certain direction. Beam
directions are dynamically generated based on detected UEs’
positions and orientations. let aSRU

RIS (ψ) ∈ CM×1 denote the
steering vector of the SRU with mth elements SRU → RIS
(hSRU

RIS ∈ CM×R) which can be expressed as

aSRU
RIS (ψ) = ej2π(m−1)dSRU sinψ/λ, (7)

where d(SRU) and λ denote the antenna spacing and the wave-
length of the signal in the SRU, respectively, with an angel
range from ψ ∈ [−π/2, π/2). Moreover, let aRIS

UE (φ,γ) ∈ CN×1

denotes the steering vector from RIS → UE, which can be
formulated as [6]

aRIS
UE (φ,γ) = ej2πdRIS sin γ

[
⌊n− 1

NRIS
⌋ sinφ+

(
(n− 1)− ⌊n− 1

N RIS
⌋NRIS

)
cosφ

]
/λ

,

(8)
where d is antenna spacing and the and λ is the wavelength.
φ ∈ [0, π), and γ ∈ [−π/2, π/2) indicate the azimuth
and elevation (AoA/AoD), accordingly. dRIS, and NRIS are
the element spacing, and the number of reflecting elements
placed at each row of the RIS, respectively. Therefore, LoS
components of the SRU → UE (hSRU

UE ), SRU → RIS (hSRU
RIS ),

and RIS → UE (hRIS
UE ) can be formulated as a function of steer-

ing vectors for [aSRU
UE (ϕSRU

UE )], [aSRU
RIS (φSRU

RIS ,γSRU
RIS ) aSRU

RSI (ϕ
SRU
RSI )],

and [aRIS
UE (φRIS

UE ,γRIS
UE )] respectively [6]–[8]. Here (ϕSRU

UE ) and
(ϕSRU

RIS ) represent the AoA from the SRU → UE and the AoD
from the SRU → RIS, respectively, where (φSRU

RIS ) and (γSRU
RIS )

indicate the azimuth and elevation AoA from the SRU → RIS,
correspondingly, where (φRIS

UE ), and (γRIS
UE ) denote the azimuth

and elevation AoA from the RIS → UE, accordingly.

A. RIS-Based Beamforming Configuration

In this section, we propose a RIS beam selection model
that uses SRU multimodal data to identify a small subset of
candidate beams, which SMTL subsequently trains to select
the beam that maximizes the normalized signal power [28].
More specifically, the main algorithmic component involves
amounts to proposing a means for identifying a small subset
of possible phase shift configurations for the RIS, where each
configuration is a vector of phase shifts applied to the RIS
elements Pk ⊆ P of K beam pairs such that (i∗, j∗) ∈ Pk

with high probability. To do so, we assume a fixed RIS
codebook CRIS = {ϕ1,ϕ2, . . . ,ϕMi

}, CRIS = {ϕi}
CRIS
i=1 ,

where each ϕi represents a different phase shift configuration
for the RIS. Also, we assume a fixed receiver codebook
CUE = {w1,w2, . . . ,wMj

}, CUE = {wj}CUE
j=1, where each

wj represents a different beamforming vector for the receiver.
Therefore, we seek to achieve certain indexes containing the
corresponding best beam pair labels at the RIS and receiver
sides with the definition of (i∗, j∗) ∈ CRIS × CUE.

Assuming that the RIS steers the signal from the SRU to the
UE, the overall received signal at the receiver after considering
the ith configuration of the RIS and the jth beamforming
vector can be written as

y(i,j) = wH
j

(
hSRU

UE HRIS
UE + hSRU

RIS ϕih
RIS
UE

)
s+wH

j n, (9)

where hSRU
UE represents a direct channel from the SRU → UE,

HRIS
UE is a channel vector from the RIS → UE, hSRU

RIS refers
to the channel vector from the SRU → RIS, hRIS

UE indicates
combined channel matrix from the RIS → UE.

This approach aims to maximize the received signal power
by finding the optimal pair (ϕ∗

i ,w
∗
j ) that maximizes the

received signal power

(ϕ∗
i ,w

∗
j ) = argmax

1≤m≤M,1≤n≤N

∣∣wH
j

(
hSRU

UE HRIS
UE + hSRU

RIS ϕih
RIS
UE

)∣∣2,
(10)

for each pair (ϕi,wj), we can compute the received signal
power Pi,j , and identify the pair (ϕi,wj) that maximizes the
signal power as

(ϕ∗
i ,w

∗
j ) = argmax

i,j

∣∣wH
j

(
hSRU

UE HRIS
UE + hSRU

RIS ϕih
RIS
UE

)∣∣2, (11)

For additional simplification, we can further break down the
computation for each i in CRIS and j in CUE as follows

v(i,j) = wH
j hSRU

RIS ϕih
RIS
UE , (12)

By adding the direct channel contribution, we can formulate
an equation as

u(i,j) = v(i,j) +wH
j hSRU

UE HRIS
UE , (13)

Therefore, the signal power for each configuration can be
computed as

P(i,j) =
∣∣u(i,j)

∣∣2 , (14)

As a result, we can formulate the maximum selection from
the configuration (ϕ∗

i ,w
∗
j ) that gives the maximum P(i,j).

Therefore, the signal-to-noise ratio (SNR) for a given RIS
configuration ϕi and receiver beamforming vector wj can be
expressed as

SNRi,j =

∣∣wH
j

(
hSRU

UE HRIS
UE + hSRU

RIS ϕih
RIS
UE

)∣∣2
σ2
n

, (15)

where σ2
n is the noise power. Accordingly, we can maximize

the SNR by selecting the optimal pair (ϕi,wj) from their
respective codebooks as

(ϕ∗
i ,w

∗
j ) = argmax

i,j
SNRi,j , (16)
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IV. COOPERATIVE MULTI-SPARSE INPUT/MULTI-TASK
LEARNING-BASED FEDERATED LEARNING (C-SMTL)

The one-size-fits-all approach commonly adopted by tradi-
tional RANs does not adequately meet the specific needs of
different applications. This generalization can lead to ineffi-
ciencies, as the diverse nature of communication tasks often
requires tailored solutions that consider individual application
requirements, and real-time communication environment con-
ditions. The SMTL is developed to overcome this limitation
by learning a function that maps from the multi-input sample
space to multi-output spaces, where each output addresses
a particular objective. SMTL can perform multiple tasks
simultaneously during training, where each task has a specific
set of labeled data, and the model learns to perform all tasks
simultaneously. The input to the SMTL model is divided
into several groups, each of which corresponds to a specific
observation of input features. In each group, the input features
for the neural network are derived from observations gathered
at that particular point in time. For each group, the model
produces task-specific outputs incorporating the observed input
features and the learned representations captured by the H-
RAN network. In this paper, SMTL-DRL is designed to adapt
to the dynamic environment and make real-time decisions to
select optimal RCs.

A. C-SMTL-Based RIS Beam Selection Scheme

We formulated the selection of the optimal beam pair
vectors at the RIS and UE as a decision-making problem.
Deep Reinforcement Learning (DRL) is well-suited to such
tasks, where the goal is to learn a policy that selects beam
pairs that maximize a certain reward (e.g., the received signal
power and SNR) [9]–[11]. First, we represent the current
state of the system st, which includes information about
channel condition, sensor data, previous beam selections, etc.
Second, the action at is defined as selecting a beam pair
vector (e.g., selecting a beamforming vector at the UE and
a phase configuration at the RIS). Third, the reward function
rt, typically expressed as the (e.g., received signal power, or
SNR) after taking action at in a state st. Finally, we formulate
the policy π(at|st) which refers to the probability of taking
action at under the given state st. C-SMTL-DRL is designed
to learn a policy π∗ that optimizes the expected cumulative
reward (i.e., the expected sum of rewards over time

π∗ = argmax
π

E

[
T∑

t=0

γtrt

]
, (17)

where γ ∈ [0, 1) refers to the discount factor and T indicates
the time horizon.

In the action at setting, in each time step t, the C-SMTL-
DRL agent (e.g., deep Q-network (DQN), deep deterministic
policy gradient (DDPG), etc.) selects an action (beam pair)
based on the current state st

at = argmax
a

Q(st, a; θ), (18)

where Q(st, a; θ) is the Q-value function that estimates the
expected cumulative reward rt for taking action at in-state st,
parameterized by θ which indicate the weights of the deep
learning neural network.

In this setting, we define the reward function rt as a function
of the SNR

rt = log2

(
1 +

∣∣wH
j

(
hSRU

UE HRIS
UE + hSRU

RIS ϕih
RIS
UE

)∣∣2
σ2
n

)
, (19)

B. C-SMTL- DRL Optimization Process

The initialization of the optimization process starts by using
the replay buffer D to store experiences (st, at, rt, st+1),
and initializing the Q-network Q(s, a; θ) with weights θ. For
each episode, we initialize the state s0 at each time step t
and select an action at by using an epsilon-greedy policy
(with probability ϵ of taking a random action; otherwise,
selecting argmaxa Q(st, a; θ). We implemented the selected
action at (i.e., selected a beam pair). Next, observe the reward
rt and the next state st+1. The C-SMTL-DRL records the
transition (st, at, rt, st+1) to the replay buffer D. The Q-
network is updated by sampling a random mini-batch of tran-
sitions (si, ai, ri, si+1) from D and updating the Q-network
by minimizing loss.

L(θ) = E(si,ai,ri,si+1)∼D[(
ri + γmax

a′
Q(si+1, a

′; θ′)−Q(si, ai; θ)
)2

]
, (20)

where θ are the weights of the target network, which are peri-
odically updated from θ. Similarly, the state st is updated, set
st ← st+1. Finally, the above steps repeat until convergence,
where the policy π(at|st) consistently selects the beam pairs
that maximize the reward.

V. SIMULATION AND RESULTS

In this section, simulations are performed to evaluate the
performance of the proposed model using different computa-
tional methods, e.g., DeepSense 6G dataset, scenario 35 [12],
InSite ray-tracing software [13], and the Python programming
platform. Additionally, to train and assess the model, OpenAI
Gym [14] is used as an environment template, integrated
with Python TensorFlow. OpenAI Gym and TensorFlow offer
the necessary tools for implementing complex neural net-
work architectures and APIs for easily creating custom tasks.
OpenAI Gym also provides standard benchmark tasks for
evaluating different neural network architectures. To determine
the converged reward, we sum the latest 20 iterations from M
= 200 iterations. We simulate an outdoor H-RAN scenario
where one SRU is positioned alongside the road at (xi, yi, zi)
and provides a direct link to the RIS and UEs with a random
distribution of user densities. This area also has a RIS located
at (xr, yr, zr) which provides an indirect link to the UEs.
In the simulation, we assume SRU’s transmit power is 25
dBm. The duration of periodic feedback ti reported by SRUi,
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includes the UEj information e.g., position Xj(xj , yj), and
the distance between SRUi and UEj Dj(dj,x, dj,y). Fig. 2
illustrates the comparison of H-RAN performance against to
benchmark scheme of RIS-based random phase, in which the
phase shifts are randomly chosen from (0, 2π], whereas the
beamforming matrix is obtained as where each Γi = ejθi

with θi ∼ Uniform(0, 2π] for used number of RCs as a
selection accuracy. Simulation results show that the proposed
model outperforms the existing ones in terms of accuracy and
robustness. Furthermore, the results indicate that the proposed
model suits large-scale networks. This is because by analyzing
the sensor data, the system can determine the positions of the
RIS and receivers. This spatial information can then be used to
calculate the phase shifts that align the reflected beams toward
the receiver, thereby maximizing signal strength.
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Figure 2: Number of RCs used as a function of selection
accuracy.

VI. CONCLUSIONS
The evolution towards H-RAN necessitates a holistic ap-

proach, wherein various advanced technologies and commu-
nication paradigms are integrated into a unified framework.
This approach aims to harmonize a variety of components such
as wireless access networks, sensors, AI, backhaul solutions,
and computing resources, thereby facilitating seamless con-
nectivity and service delivery across diverse applications. The
integration of these technologies fosters a cohesive operational
framework capable of addressing the demands of modern
applications. SMTL framework is engineered to select tasks
specifically tailored to meet particular network conditions.
This framework’s adaptability allows for swift adjustments
to network conditions fluctuations, thus enhancing overall
network responsiveness. However, beam alignment is a critical
challenge when implementing RIS technology due to the
intricacies introduced by multiple controllable elements within
RIS. In addition, the challenge of high overhead associated
with conventional channel estimations in RIS may detract
from the performance benefits of this technology. To address
this limitation, we propose a novel solution through the
implementation of a sensor information-assisted beamform-
ing design that offers a viable solution that eliminates the

need for extensive channel training processes, thus enhancing
decision-making for AI/ML D-engines, which rely on access
to accurate and timely data. The objective is to control the
RIS elements such that the reflected beam is directed toward
a desired target. This is done by optimizing the phase shifts
of the RIS elements to ensure constructive interference at the
desired receiver location. Simulation results reveal that H-
RANs significantly bolster network resilience and reliability
through precise steering of the reflected beam for RIS. Our
approach demonstrates substantial network performance im-
provements, achieving 95% selection accuracy with only five
RC candidates.
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