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Abstract— This work presents a max-margin tiling algorithm 
to construct multi-layer perceptrons with perfect performance for 
all training patterns. Each perceptron distinguishes a portion of a 
single class patterns from all the rest patterns, as large as possible. 
The process is a divide and conquer approach therefore the size of 
the portion gradually reduced and the algorithm accelerate 
accordingly. Each layer of such perceptrons encodes different 
class patterns with different codes, maintaining faithful 
representations. The max-margin separation boundary is optimal 
to against noise therefore this construction provides resolution of 
challenging classification of noisy patterns such as seriously 
corrupted images. To our knowledge, it gives the best performance 
for noisy testing patterns among all existing methods. We applied 
the algorithm on highly sparse data of genetic mutations and 
identified not only gene NF1, which had been previously found by 
monogenic analysis, but also a list of genes whose deletions may 
polygenically associate with a group of breast cancer patients.  

Keywords—pattern recognition; classification; faithful 
representation; tiling algorithm; sparse binary pattern; gene 
mutation 

I. INTRODUCTION 
The tiling algorithm [5] used to train the feedforward neural 

network tend to generate an excessively large number of 
neurons and layers in order to achieve zero learning error, 100% 
training accuracy, for all binary patterns in the training dataset. 
They inserted a hyperplane for each pattern as near as a small 
distance ε and place the pattern at the positive side, the stable 
side, of the hyperplane. The small distance ε causes this kind of 
hyperplane unable to tolerate any noise. However, the 
assumption of infinitely small distance, ε, is necessary in their 
proof of the Theorem [5] under two special conditions, where 
the first is the pattern spaces span a large number of dimensions 
and the second is patterns are randomly distributed. In real 
applications, the number of pattern dimensions is normally 
limited to a relatively small number, for example twenty 
thousand genes in bioinformatics. Besides that, patterns are all 
fixed in its space instead of a random distribution. For these 
reasons, the limitation of extremely small distance ε can be 
eased. The relaxation of the requirement on small distance 
allows the separation boundaries to have wide margins between 
different classes of patterns thus tolerate noise in the task of 
pattern classifications. This work devises various techniques to 
construct neurons and layers of neural networks taking 
advantages of large margins. 

In one hand, the backpropagation algorithm used to train a 
fixed structure of neural network cannot accomplish zero 
learning error [7][8] as the training was performed on a pre-
determined structure. In the other hand, Support Vector 
Machines (SVM) [1] uses only a single perceptron finding a 
decision boundary with maximal margin between two classes. 
Due to the limitation of the structure, it relies on kernel function 
to nonlinearly transform the data into a different space, 
normally to a higher dimensional space to gain more flexibility 
and nonlinearity, to accomplish the training of the single 
perceptron. In other words, what SVM adjusts is mainly the 
feature space of the data. Although the kernel function can be 
powerfully expressive, SVM does not have a mean to train the 
transformation, therefore it is an arbitrarily designed encoder. 
To determine the right space for the kernel functions, one has 
to use some other statistical techniques such as cross-validation 
[9], which had been widely used to decide the parameters of 
statistical models, by repeatedly learning and testing [10]. 
Giving certain degree of penalty to the loss function of SVM 
and creating a so-called soft margin hyperplane, a better 
classification outcome can be achieved. This work further 
devises effective tiling algorithms to construct multilayer 
neural network using linear SVM with its property of wide 
margin. 

 
The Bi-perceptron algorithm [2][3] tried tiling algorithms 

with wide-margin properties to separating different classes of 
patterns. Perceptrons with large margins between patterns 
performed better on noisy data and greatly reduce the total 
number of layers and neurons. It also preserved the faithful 
representations [5] in each layer hence held the key to improve 
the tiling algorithm and augment the classification power of 
neural network. The Bi-perceptron algorithm achieved zero 
error for all training patterns by constructing three hidden layers 
if patterns are analog and two layers if binary. As shown in the 
work published in [2], the two parallel separation planes of the 
perceptron separate one portion of patterns in a single class as 
large as possible from the rest of classes with wide margins, see 
Fig.1. Portion by portion, all patterns in that single class can be 
separated and isolated from the rest in a divide and conquer 
manner. Such strategy not only drastically reduced the total 
number of faithful representations [4][5] and layers but also be 
able to deal with imperfect patterns such as gene expression. 
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Due to the nature of pattern distribution, a reasonable attempt 

to select the portion to be isolated is to choose the patterns in 
the class from the outermost portion, farthest from the center, 
in the space by using a perceptron. Then take that portion of 
patterns out and repeat the process for the remaining patterns 
until none of them left. This isolation strategy is different from 
those proposed in [2][5] thus will be discussed and developed 
in the rest of this work. 

 

 
 

Fig. 1: Illustration of an isolated portion of single class patterns 
from all the other classes by two parallel perceptrons in the Bi-
perceptron algorithm [2]. 
 

  In terms of binary data, all patterns are located at the 
corners of a hypercube and are equally away from the center. 
Fig. 2 sketches a simplified 3D pattern space and a perceptron 
representing a wide-margin hyperplane that sperate a pattern 
from the other three of different classes. The wide-margin 
hyperplane is an optimal separation boundary to resist the noise 
because both side of the hyperplane have the space to against 
data fluctuation. 

 
During the isolation process of building a neural network, a 

perceptron that cover the largest portion of training patterns in 
same class is added to current layer. Those patterns being 
covered will be excluded therefore the size of training set 
reduces gradually after each isolation. This isolation process 
guarantees the output of the layer are faithful [4][5] for all 
patterns, which means different classes of patterns will have 
different output. In the following sections, we show how to 
operate the perceptrons to isolate binary patterns in the first 
layer.  

 
Fig. 2: Schematic diagram of a perceptron obtained from linear SVM, whose 
hyperplane W1

(1), separating four binary patterns. One pattern, the red point at 
top, ‘pm’ is on positive side of the plane, |{sm}|1=|{sM}|1=1. Three patterns, the 
red points at bottom, are on negative side |{dm}|1=3 of the plane; two of the three 
patterns, leftmost and rightmost points, are the support vectors of SVM in {dm}. 

II. TILING ALGORITHM FOR BINARY DATA 

Considering binary input of cancer mutation data of 
currently known genes for breast, prostate, and lung cancer 

patients, we have M samples and N genes. The collection of all 
samples is represented as a set in {pm , m=1 ~ M} and the size 
of the set |{pm}| is M. All genes are either having damaged 
mutation or being normal therefore in one of the binary states. 
Each type of cancer is a class of sample and three classes, 
breast, prostate, and lung, are used as an example, C≡{C0= 
‘breast’, C1= ‘prostate’, C3= ‘lung’}. We plan to constructed 
multiple perceptrons in the first layer of a network to separate 
breast cancer samples C0 from other samples (C0)′. There are 
five steps of them 

 
Step 1: Construct ancillary hyperplane. 
 

In order to determine an ancillary hyperplane Wm for each 
breast cancer sample pm in C0, we find the set {dm} which is the 
collection of samples of other classes (C0)′ nearest to pm. 
Therefore, {dm} may contain samples from either prostate or 
lung cancer, or both. The variable m will iterate through each 
breast cancer samples from one to |C0|. The size of {dm} has to 
be at least of N because that is the minimal number required to 
exactly determine a hyperplane of input with N dimensions. In 
this example, the hyperplane has N variables corresponding to 
N genes. These N samples in set {dm}≡{pq; pq ∈{smallest values 
|pm –pq|; q=1~N and pq ∉ C0}} are those samples pq having the 
most similar mutation patterns but different cancer types to pm.  
With this size of sample set |{dm}|=N, it’s enough to construct 
an ancillary hyperplane Wm, which has N dimensions, that 
passes through these N samples in the set {dm}. The sample pm 
is placed at the positive side of this ancillary hyperplane and the 
set of samples {dm} at negative side for simpler notations. This 
is not the final hyperplane of the perceptron therefore is 
ancillary. 

 
The hyperplane Wm can be obtained using linear SVM [1] 

as a binary classifier by placing the single sample pm on the 
positive side and the set of samples {dm} on the other side of 
the hyperplane. The linear SVM algorithm compute a max-
margin hyperplane to split the two groups of samples, breast 
cancer and other types of tissue. It doesn’t require N samples 
for N dimensional data to determine the hyperplane hence 
|{dm}| is not necessary to be N. The plane can serve as the 
ancillary hyperplane Wm that we are constructing. After the Wm 
being determined, we can shift it by changing the bias term, 
gradually move the hyperplane without altering its orientation 
toward {dm} and away from pm until the hyperplane finally meet 
one of the nearest support vector or data in set {dm}. It is highly 
recommended to use this SVM perceptron to obtain the 
ancillary hyperplane Wm. 
 
Step 2: Construct a second set. 
 

For each m, the next step is to find a set {sm} containing all 
samples that of the same type of cancer and being classified the 
same with pm, which means those breast cancer samples on the 
positive side of the hyperplane Wm. The size of {sm}, denoted 
as |{sm}|, can vary for each m, depends on how many samples 
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of breast cancer in C0 are correctly placed on the right side of 
the hyperplane. Another way is using all samples in C0 to be the 
set of {sm} for the sample pm in C0. In this way, the set size 
|{sm}| will be equal to |C0 |. 
 
Step 3: Picking the set of {sm} with largest size. 
 

Among different samples of breast cancer pm, this step is to 
pick the set {sM}1 containing the largest number of C0 samples, 
which means the set having the most samples on the correct side 
of hyperplane WM. The {sM}1 can be expressed as maxm{|{sm}|; 
pm ∈ C0}. We now have the required samples, which are in 
{sM}1, to construct the first isolation perceptron, W1

(1), for the 
class C0. 
 
Step 4: Construction of isolation perceptron. 
 

Select the sample, pu, which is the nearest to hyperplane WM 
from {sM}1, so pu ∈{sM}1. A normal vector perpendicular to the 
ancillary hyperplane WM and passing pu will have a projection 
pv on the hyperplane. Construct an isolation hyperplane that 
passes the middle point between pu and pv, and is parallel to the 
ancillary hyperplane Wm. The isolation hyperplane is denoted 
as W1

(1) where the superscript is the layer number and the 
subscript is the neuron number. The W1

(1), intersects at the 
middle point with the normal vector. The synaptic weights of 
the first neuron in the first layer can be obtained from the 
coefficients of the hyperplane W1

(1).  
 
Another way is that W1

(1) can be obtained from linear SVM 
trained by the setting of sample pu on the positive side and the 
{dm} on the negative side. This SVM-version of W1

(1) has the 
wide margin between pu and its support vectors of {dm}. The 
weights of the first neuron in the hidden layer, Fig. 3, can be 
obtained using the coefficients of the SVM-version of W1

(1).  
 
Step 5: Reduce the set of C0 and construct next perceptron.  

 
Once we have a perceptron covering a group of breast 

cancer samples {sM}1 and producing consistent output for them, 
all the samples in set {sM}1 can be removed from the training of 
current layer. The remaining breast cancer samples not yet to 
be classified correctly is collected as a set C0

1. The C0
1 is the 

intersect between C0 and ({sM}1)′, C0
1≡C0 ∩ ({sM}1)′, if ({sM}1)′ 

is the complement set of {sM}1.  
 
The whole procedure, step 1~5, repeats again using the 

samples in reduced breast cancer set C0
1 to generate another 

isolation perceptron W2
(1) obtained from {sM}2. The intersection 

of {sM}a and {sM}b is empty, {sM}a ∩ {sM}b =Ø for a ≠ b, and 
the union of all reduced sets containing all samples of breast 
cancer C0, {{sM}1∪{sM}2∪{sM}3∪…∪{sM}L}≡C0. 

 
Set all the weights in the second hidden layer to be one, 

Wkj
(2)=1 for k=1 and all j=1, .., L, see Fig. 3. The mutation 

patterns of breast cancer will trigger the network and produce 
more than one activated perceptron at the hidden layer because 

the sample is on the positive side of the hyperplane as the way 
it was constructed. At the hidden layer, some neurons are 
therefore positive if input is from breast cancer while all 
neurons are negative if from the other cancers. The output layer 
can simply detect if any hidden neuron is activated. In this 
figure, we set N1=L and Wji

(1) is the synaptic weight of the jth 
neuron to the ith input gene. The genes as shown in Fig. 3 can 
be from different biological pathways. We expect the 
multilayer network that utilizes the max-margin ability to 
associate the output and gene mutation patterns to provide us 
useful insight about biological pathways, for example links 
between homologous recombination deficiency and breast 
cancer [11], used to achieve perfect classification. 
 

 
 

Fig. 3: Illustration of the neural network for gene mutation analysis. The 
number of neurons at input layer is the number of genes N0=N, the hidden layer 
is N1=L, and the output layer is N2=1. The threshold value of input layer is 
Wk0

(1)=1 and the hidden layer is Wk0
(2)=-0.5.  

III. ALTERNATIVE CONSTRUCTION FOR BINARY 
PATTERNS 

In the above sections, one may pick either pm ∈ C0 or pm ∈ 
(C0)′ using the learning method of the five steps. Due to the 
hypercubic structure of binary input in space, we can pick any 
pattern pm ∈ C that will be on the outer edge of the pattern space. 
We can construct a separation hyperplane which isolates, as 
large as possible, a portion of the same class patterns as that of 
pm. Then pick another sample from the remaining C. Iteratively 
operate these five steps and keep reducing the patterns in set C, 
to obtain a series of isolation perceptrons, {W1

(1) W2
(1) W3

(1),.., 
WL

(1)}, where WL
(1) is the last isolation perceptron, namely the 

last neuron in the hidden layer, see Fig. 3. 
 
These neurons comprised of the neurons in the first hidden 

layer as that described in [2][3]. The following layer can be 
constructed in a similar way by using the outputs of its previous 
layer. In his way, the construction maintains the faithfulness of 
each layer. The construction of layers finishes when the 
classification is accomplished as in [4][5]. This construction 
method gives better performance in many cases. 
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IV. ANALOG PATTERNS 

Since the hypercubic structure for binary pattern is not 
available for continuous data features, we slightly modify the 
way of construction for analog patterns. The schema of the 
construction procedures is depicted in Fig. 4. The isolation 
boundary was placed to separate a portion of same patterns that 
are on the outer edge of the data cluster. The construction of 
neurons in each layer will be finished when the output of the 
layer reaches faithfulness, in other words patterns in different 
classes produces different output. The construction of layers 
will be stopped whenever the classification task is 
accomplished [1][4].   

 

 
Fig. 4: Illustration of hyperplane constructions for analog patterns in the first 
hidden layer. The first neuron (left) split the majority of the circles from the 
crosses with one error. The second neuron (center) separate the remaining circle 
from the crosses and both neurons (right) together successfully generate faithful 
representations. 

V. ALTERNATIVE ISOLATION TECHNIQUE 

For more complex data, one can isolate different classes by 
sampling patterns near the separation border right between 
neighboring classes, see Fig. 5. Then group a small number of 
neighboring patterns along the border, see the large circles in 
Fig. 5. Construct one linear SVM hyperplane for the border 
patterns in each group. These SVM hyperplanes comprise the 
neurons in the first hidden layer. We stop increasing the number 
of neurons when the faithful representation of the first hidden 
layer is obtained. Then proceed to the construction of the next 
hidden layer. The layer construction will be stopped when the 
correct classification of all input is reached. This border 
construction solves the local minima problem suffered by back 
propagation algorithm [7][8]. 

 
Fig. 5: The focus on the neighbors between two different classes, black circles 
and crosses, offer the power to approximate the non-linear separation boundary 
by multiple linear hyperplanes, which represented by the neurons plotted at the 
right-hand side. 

VI. SIMULATION RESULT 

The mutation profiles of breast, prostate, and lung cancers, 
were downloaded from The Cancer Genome Atlas Program 
(TCGA) [13].  These three types of cancers are with the 
highest incident rates globally. The sequence protocol of breast 
and prostate cancer were WXS and lung cancer, or lung 
squamous cell carcinoma specifically, was capture sequencing. 
This means only mutations on exon regions are to be detected, 
the data didn’t contain mutations in intergenic regions and 
intron regions, etc. Only two types of mutations were 
considered in our analysis.  The first type is the damaging 
mutations causing malfunctioned protein product, such as 
changes at start codons. The second type is the non-conserving 
mutation causing the properties of proteins changed, such as 
insertion or deletion at stop codons. The sample size of each 
cancer type in the dataset were |C0|=992, |C1|=331, |C2|=178, 
overall M=1501 in total. The number of genes detected with 
single nucleotide mutation was around N=18676. During 
processing the breast cancer samples in C0, the size distribution 
of each {sm} for first neuron is listed in Table 1. The size of 
{sM}1, largest set among {sm}, was |{sM}1|=672, accounting for 
67.74% of breast cancer samples in the dataset. The sparsity of 
the matrix, the number of non-zero elements divided by the size 
of the matrix, was around 0.44%. 

 
Table 1: The distribution of the size |{sm}| for the m iterating through one to 
|C0|=992. 

Number of |{sm}| Frequency 

<5 854 

5~10 116 

>10 22 

 

 
Figure 6: The training procedure were recorded. The size of C0 (blue line) was 
gradually decreased as the iteration increased. The size of {sM}1 (red line) was 
672, {sM}2 was 6, and kept reducing as the number of neurons increased. The 
training process reached 100% accuracy to classify all breast cancer samples 
correctly in C0 after 305 iterations. 
 
In each iteration, the algorithm visited through all m, and found 
the largest set of {sm} containing the correctly classified 
samples. The set size of samples, |{sM}i|, covered by each 
neuron gradually reduced to one, |{sM}i>10|=1, and the output of 
the network eventually reached 100% classification accuracy, 
see Fig. 6. The small set size after certain iteration, |{sM}i>10|=1, 
could be due to the limited sample size and we expect the 
capacity of each neuron can cover will increase if the collection 
of samples expands. The algorithm halted as it reached faithful 
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representation for all samples in C0 after 305 iterations of 
repeating the five steps described in Section 2 and reached zero 
training error. 
 

There were 13801 non-zero elements in the first neuron 
W1

(1), corresponding to the 13801 genes contributed to shape  
of decision boundary. Six of the genes were Mitochondrial. The 
W1

(1) covered samples from as little as one detected protein-
affected mutation up to as high as 1060 mutations (988 genes). 
The threshold value of the first neuron at the hidden layer was 
W10

(1)=-0.11 therefore the higher the weight was, the more the 
mutation contributes to reach the threshold of being classified 
as this group of breast cancer samples. Table 2 lists the highest 
and lowest ten weights of them. 

 
Table 2: The top ten positive and negative weights of genes contributed to the 
recognition of the breast cancer group classified by the first neuron W1

(1). 
Top 10 Bottom 10 

Weight Gene Weight Gene 

1.68 NF1 -0.12  HERC5 

0.02 CDH10 -0.07  ASB5 

0.02 ZFHX4 -0.07  ERBB3 

0.02 COL22A1 -0.07  APAF1 

0.02 ZNF208 -0.07  ADGRL3 

0.02 SRRM2 -0.06 DMBX1 

0.02 SPHKAP -0.06 IRX1 

0.02 RELN -0.06 TP53 

0.02 KIAA1549 -0.06 NOP58 

0.02 UNC5D -0.06 OSBPL10 

 
The largest weight of the first neuron corresponds to 

Neurofibromin 1 (NF1). At least fourteen isoforms are 
currently known for this gene and its deletion was reported to 
be linked with the risk of breast cancer [14][15][16]. In {sM}1, 
17 patients were detected with damaging mutations on NF1 and 
10 patients with non-conserving mutations to it. The weight of 
HERC5 is the negatively largest however none of patients in 
this group having a damaging and non-conserving mutation to 
this gene. The low weight of HERC5 doesn’t mean the damage 
of the HERC5 function lower the chance of being classified as 
breast cancer because the other neurons might cover the 
patients with this mutation. Therefore, the negative weight 
means the classification of this type of samples tends to be not 
in this group. 

 
We visualized [12] the mutation profiles of neuron W1

(1) 
along with chromosome, in Fig 7, and can see the determinant 
mutations are not uniformly scattered on the DNA. Most of 
them contribute some but a few of them contribute significantly 
more, such as those genes listed in Table 2, for the final 
classification of this specific group of breast cancer samples. 
As expected, none of the mutations should happen in 

chromosome Y as the majority of the breast cancer cases are 
female. 

 

 
 

Figure 7: The weight of mutation profiles on the ideogram. The chromosomes 
are listed from chromosomes one to 22, X and Y. Mitochondrial DNA was used 
but is not plotted here. The height (y-axis) of the black dots above each 
chromosome denotes the synaptic weights corresponding to the genes. Top ten 
genes with largest and smallest weights are annotated with their gene names 
accordingly. 
 

The advantageous multivariate analysis by proposed model 
considered the interaction and covariance among genes. For 
this reason, the weights and effects were not seen as standalone 
variables; genes are correlated. Figure 8 illustrates a view about 
how the decision were shaped. For example, the missense 
mutation of the tumor suppressor gene TP53 brought the initial 
weight closer to the threshold and a sequence of cumulative 
weights over mutated genes led to the final classification 
outcome of a patient sample. The classification was not based 
on single gene.  

 
The patient on the left of Fig. 8 who had 15 damaging 

mutations and 33 non-conserving mutations were classified into 
the breast cancer group. Among the 15 damaging mutations, 11 
of them were causing frame-shifting, three were nonsense 
mutations and one happened at splice site. For the 33 non-
conserving mutations, only two of them were caused by in-
frame deletion and the rest were missense mutations. The 
patient on the right of Fig. 8 had 13 damaging mutations and 46 
non-conserving mutations. Five of the damaging mutations 
were deletion causing frame-shifting, four were nonsense 
mutation, and four were mutations at splice sites. For the 46 
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non-conserving mutations, only a mutation was in-frame 
deletion and the rest were missense mutations. Note that the 
mutations only happened to one of the alleles, therefore the 
protein functions might be decreased but not ceased.  

 

 
Figure 8: The cumulative weights against the threshold W10

(1). The blue barplot 
indicates the synaptic weights for each individual genes shown in y-axis and 
the black curve is the cumulative weights from the bottom of the figure to that 
point. The classification of each sample, whose barcodes are shown in subtitle 
at top, can be seen as the comparison of the final cumulated weight at the top 
with the threshold (red line). The sample is classified in the set {sM}1 if the sum 
of weight is larger than the threshold and not in the set if smaller. 

VII. Discussion 

Neural networks have been successfully used to accomplish 
complex tasks in many areas including biology and large 
language modeling. We have described a training method for 
multilayer neural networks with flexible structure by taking the 
advantage of the property of large margin to tolerate noisy data 
in the task of pattern recognition and guarantee a hundred 
percent of training accuracy. This neural network can generate 

dynamic hypothesis space therefore high VC dimensions [17]. 
The optimal classification tiling algorithm is shown to be a 
powerful model to analyze complex and sparse data of genetic 
mutation from large database. This multivariate analysis not 
only found the gene previously identified but also provided new 
candidates for further analysis. 
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