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Abstract—In recent years, significant advancements have been
made in the field of image-to-3D reconstruction. However, one
of the persistent challenges that remains unresolved is messy
surfaces of generated outputs. To tackle this issue, we introduce
a novel retrieve-and-generate scheme specifically designed for
image-to-3D reconstruction tasks. Our method involves a two-
stage process: first, the model retrieves the most similar 3D mesh
corresponding to the input image; second, it generates a texture
map that can be accurately mapped onto the retrieved mesh. In
the initial retrieval phase, our approach leverages a pre-trained
multi-modal joint representation to identify the 3D mesh that
closely resembles the input image within the embedding space.
Subsequently, texture generation module generates a realistic
texture reflecting the input image, which leads to the complete 3D
object reconstruction when this texture is mapped to the retrieved
mesh. We have observed that our retrieve-and-generate approach
significantly enhances the quality of the reconstructed 3D objects
from a single input image. This improvement in reconstruction
performance demonstrates the efficacy of our proposed method
and its potential to advance the state-of-the-art in image-to-3D
reconstruction technology.

Index Terms—Image-to-3D reconstruction, 3D object genera-
tion, 3D shape retrieval, Texture synthesis

I. INTRODUCTION

The task of image-to-3D reconstruction aims at generating a
3D object from a given 2D image. It holds significant potential
in reducing the manual labor required to create 3D assets
across various fields such as animation, graphics, and gaming.
This process is considered to be challenging due to the need
to predict and generate the parts of the object that are not
visible in the input image, using only the limited information
available.

With the advent and success of generative Al, recent studies
struggling this task have gained a remarkable progress by
leveraging the 3D ability inherited in the image generation
models. Recent studies [1], [2] utilize different views of the
object produced by image generation models and reconstruct
3D objects in an end-to-end manner based on Neural Radiance
Fields (NeRF) systems.

Despite these advances, the visual quality of the generated
3D outputs still falls short of those created by skilled human
designers. A primary issue lies in the uneven and often messy
surfaces of the reconstructed models, which detracts from their
overall realism and usability in real-world applications.

In this work, we introduce a novel retrieve-and-generate
scheme for the image-to-3D reconstruction task. Prior works in
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3D mesh retrieval have focused on effectively querying similar
shapes from large 3D databases, by leveraging deep learning
techniques to enhance the retrieval performance [3], [4]. On
the other hand, texture generation methods have advanced
in generating high-fidelity texture maps that accurately align
with 3D geometry while simultaneously reflecting the given
conditions [5], [6]. Inspired by these research backgrounds,
our approach contrasts the current end-to-end paradigms by
incorporating a mesh retrieval stage that queries the most
similar 3D mesh corresponding to the input image, and a
texture generation stage that generates a texture map that is
designed to be mapped onto the retrieved mesh.

Our empirical results demonstrate that this retrieve-and-
generate approach significantly enhances the quality of the
reconstructed 3D objects compared to existing models. By
effectively combining the strengths of mesh retrieval and
texture generation, our method produces 3D objects with
superior visual fidelity and surface smoothness, marking a
substantial improvement over previous methods. This novel
framework not only advances the technical capabilities in
the field of image-to-3D reconstruction but also provides a
practical solution for creating high-quality 3D assets with
reduced human labor.

In short, our main contributions can be described as follows.

o To our best knowledge, it is the first time to introduce a
new approach for image-to-3D reconstruction which inte-
grates mesh retrieval and texture generation, contrasting
the traditional end-to-end paradigms.

o The proposed method significantly improves the visual
fidelity and surface smoothness of 3D objects compared
to existing models, addressing the common issues of
uneven and messy surfaces in the reconstructed models.

« While our method is challenging to generate a 3D object
that is perfectly identical to the input image, it has the
powerful advantage of producing high-quality objects at
high speed, which can be applied directly to industries
that require a large amount of 3D objects.

The remainder of the paper is organized as follows: Section
IT discusses recent studies, including 3D reconstruction, 3D
shape recognition and retrieval, and texture generation. Section
IIT explains our retrieve-and-generate scheme. Section IV
introduces the dataset used in the experiment and compares
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Fig. 1. Comparison between existing end-to-end approaches and our retrieve-
and-generate paradigm.

the results from our method with previous studies. Finally,
Section V concludes the article with an analysis of this study.

II. RELATED WORK
A. 3D Reconstruction

To effectively learn how to reconstruct 3D object from a
single image, a substantial amount of 3D data is required for
model training, which is often costly to collect. To address
this, recent approaches have utilized image generation models
with high generative capabilities to guide 3D reconstruction.
For instance, DreamFusion [7] employs the image generation
model Imagen [8] to generate images of the desired object
from various viewpoints based on text input, which a NeRF is
used to reconstruct the 3D object. Similarly, Zero-1-to-3 [2]
enhances the Stable Diffusion model by training it on different
viewpoints, enabling more accurate viewpoint synthesis for 3D
reconstruction from a single image. Magic123 [1] integrates
Stable Diffusion as 2D prior information and Zero-1-to-3 [2]
as 3D prior information to create a generative model that
maintains both complex object generation capability and 3D
consistency.

NeuralLift-360 [9] generates a 3D object from a single
image with 360° views by utilizing a depth-aware neural
radiance representation guided by denoising diffusion models
and a CLIP-guided sampling strategy, enhanced with a ranking
loss for rough depth estimation. RealFusion [10] reconstructs
a 3D object by fitting a NeRF and utilizing a diffusion-
based conditional image generator, combined through the
DreamFusion method to integrate the input view, conditional
priors, and regularizers.

Make-It-3D [11] optimizes a NeRF using constraints from
the reference image and a 2D diffusion model for novel views,
and converts the coarse model into textured point clouds and
enhances realism with diffusion priors, leveraging high-quality
textures from the reference image. Fantasia3D [12] produces a
3D object by disentangling geometry and appearance, using a
hybrid scene representation for geometry learning with surface
normals as input for an image diffusion model, and incorpo-
rating a spatially varying bidirectional reflectance distribution
function (BRDF) for photorealistic rendering. Additionally,
SV3D [13] utilizes a video generation model for multi-view
synthesis, significantly improving the quality and 3D consis-
tency of the generated objects.

On the other hand, numerous studies have explored Gaus-
sian splatting, a method that represent the scene with 3D

Gaussians, achieving fast, interpretable, and high-fidelity ren-
dering [14]-[18].

B. 3D Shape Recognition and Retrieval

This task aims at accurately identifying corresponding 3D
shapes from given 2D images or text descriptions. Lin et al. [3]
proposes a method to retrieve 3D shapes through instance and
category-level contrastive learning between single images and
3D shapes. Liu et al. [4] proposes a method that combines
various large-scale 3D datasets and automatically filters and
enriches text descriptions to perform multi-modal contrastive
learning between 3D point clouds, images, and text.

C. Texture Generation

Recent studies have introduced texture synthesis task that
maintains the structure of a given mesh while generating
a texture map that incorporates specific conditions using
generative models. Texture Fields [5] presents a generative
model that predicts the colors of point clouds in 3D space
to restore the texture, when given a 3D object model and a
reference image. TEXTure [19] introduces a pre-trained depth-
to-image diffusion model to generate textures on 3D shapes
conditioned by text prompt, with a novel iterative scheme with
trimap partitioning to create seamless textures from multiple
viewpoints.

In addition, Point-UV Diffusion [20] combines Point Dif-
fusion, which predicts the colors of some point clouds, with
UV Diffusion, which improves the quality of texture images
projected onto a 2D UV map. This approach enables the
generation of high-quality textures for meshes of various
geometric shapes. Furthermore, InTeX [6] is an interactive
text-to-texture synthesis method with a unified depth-aware
inpainting model to integrate depth information and inpainting
cues, addressing 3D inconsistencies and enhancing generation
speed.

III. PROPOSED MODEL

Our framework consists of a sequential process of two
modules, where mesh retrieval stage searches the most similar
object with the image, and then texture generation stage
produces a texture image which can be mapped to the retrieved
mesh, as shown in figure 2.

A. Mesh Retrieval

OpenShape [4] is multi-modal joint representations of text,
images, and 3D point clouds, which enable both images and
3D objects to be mapped into a unified embedding space. The
key idea is to train a point cloud encoder that aligns 3D shape
embeddings with CLIP’s text and image embedding spaces
through multi-modal contrastive learning.

Specifically, we utilize a large-scale 3D shape database,
ShapeNet [21], where each 3D mesh is converted into point
clouds. These point clouds are then encoded by a point
cloud encoder. To retrieve the most similar 3D object to an
input image, we calculate the cosine similarities between the
encoded image and all the encoded point clouds. The 3D mesh
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Fig. 2. Architecture of our proposed image-to-3D diffusion model with mesh retrieval and texture generation.

m with the highest similarity score is then selected for further
processing. The detailed equation is presented as follows,

argmax @) (01
o Ta@ I Tepwol]

where x and p; represent an input image and the i-th point
cloud in the 3D database which consists of /N point clouds,
respectively. e; and e, refer to the image encoder and the
point cloud encoder. The point cloud with the highest cosine
similarity score is selected as the point cloud p+, which is
then converted back to the mesh m, serving as one of the
input variables for the next stage.

px = (1

B. Texture Generation

In texture generation module, the texture image is generated
which is able to be mapped to the retrieved mesh m as well
as reflecting the style of input image. We adopted Point-UV
diffusion [20], which is a coarse-to-fine texture generation
model that produces a high-quality texture map conditioned by
a text or an image. Point-UV diffusion operates in a manner
where coarse stage generates a rough texture map, while fine
stage enhances the fidelity of generated map.

In coarse stage, points are sampled from mesh m using
farthest point sampling strategy. A set of coordinates and
colors for sampled point clouds are defined as z.,0rq and 2.
After adding noise for ¢ steps in diffusion forward process,
noisy state is defined as z;. Also, shape encoder converts
Mumask> Mnormals Meoord INt0 an embedding vector f,,, where
Munasks Mnormals Mecoord epresent the mask map, the normal
map, and the UV coordinate map, respectively. In addition, an
input image z is passed to the condition encoder, resulting
an embedding vector c,. Consequently, Point Diffusion model
predicts the color of point clouds, given z.oord> 2¢t> fm, and
Cz, as follows:

Z0 = Dél([zcoordvztafmyczvt]) )

where Dy refers to the forward process of Point Diffusion
model and Zy represents the color of the point cloud.

The remaining unsampled points are colored using the KNN
interpolation method. The completed point cloud is then con-
verted back into a mesh to extract the texture, thereby creating
the coarse map Meoarse. LIS MAP Meparse 1S subsequently
passed to the fine stage for further processing.

Fine stage also improves the fidelity of the texture map by
predicting the denoised state from a noisy input over several
steps. With texture map Mcoqrse, NOiSY state my, shape in-
formation M,qsk> Mnormals ad Meoord, UV diffusion model
generates the refined texture map myg, as follows:

A 2
moy = D92 ([mcoarse; Mg, Mmasks Mnormals Mecoord; t]) (3)

where Dj_ indicates UV diffusion model.
Finally, our framework reconstructs a complete 3D object
with this texture map m( and retrieved mesh m.

IV. EXPERIMENT
A. Dataset

ShapeNet [21] is one of the rich 3D object repository
comprising approximately 52.5k 3D models that encompass
a diverse range of categories and concepts. This dataset is
regarded as a critical benchmark for training and evaluating
3D tasks. In this study, we experimented our method using
categories of chair and table from the ShapeNet dataset, which
include 6,777 and 8,511 objects, respectively. Figure 3 presents
examples from the dataset used in our study. The first row
showcases examples from the chair dataset, while the second
row displays examples from the table dataset.

B. Result

Figure 4 qualitatively shows the reconstruction result of our
method and baseline models including Zero-1-to-3 [2] and
Magic123 [1]. Upon examination, it is evident that our model
excels in producing detailed and 3D-consistent objects that
accurately reflect the input image. In contrast, the other models
tend to generate surfaces that are incomplete and uneven,
highlighting the superiority of our approach in achieving a
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the available meshes or generating high-quality meshes would
be addressed in the future work.
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Fig. 3. Examples of the dataset used in our experiment.

(1]
higher level of detail and consistency in the reconstructed 3D
objects. This demonstrates the effectiveness of our method
in overcoming common issues faced by existing models, [2]
thereby providing more reliable and visually appealing 3D

reconstructions.
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Fig. 4. Comparison of 3D object reconstruction. Ours (a) refers to the result [9]
of mesh retrieval module, where (b) indicates the final output of our model.

V. CONCLUSION [10]

In this work, we proposed a novel retrieve-and-generate
framework for image-to-3D task, which is a new scheme [}
to overcome the low quality issue of mesh. Experimental
results showed that our method can reconstruct 3D objects
of high quality that reflects the input image as well as handle
the current issue of low quality mesh. The key idea of our
framework is that mesh retrieval module first queries the most
similar mesh with the input image, and then texture generation 3
module produces the visually matching texture to be mapped
to the mesh output. We believe our research opens up new
venues in which 3D assets are needed, such as animation, [14]
online games, and movies.

However, since our method relies on the most similar mesh
with the input image, it cannot generate the exact same mesh
with the image. Nevertheless, we expect that the applicability
of our work to practical usage in 3D industry would be wider [16]
than previous works due to the higher reconstruction perfor-
mance of our model. Several advances including expanding

[15]
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