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Abstract—Out-of-distribution (OOD) detection is crucial for
ensuring the reliability of deep learning models in open-world
environments, especially in safety-critical applications such as
autonomous driving. Existing OOD detection methods typically
focus on either classifier-based scores, which suffers from over-
confidence, or distance-based approaches that lack fine-graininess
due to their class-agnostic nature. Recently, some fused scoring
functions have been proposed but be limited to single type
of feature-based information. To address these challenges, we
propose Nearest Neighbors with Null Space Analysis (k-NNuSA),
a novel distance-focused approach that combines both distance
to nearest neighbors within the in-distribution (ID) data and
the residual against the ID principal subspace. Our method
scales the generalized distance using classification confidence,
enhancing fine-grained detection capability. We extensively eval-
uate k-NNuSA on different CNN-based and transformer-based
architectures, using ImageNet-1K as the ID reference set and a
variety of OOD datasets, demonstrating its state-of-the-art per-
formance of 96.23% AUROC and 19.34% FPR95. Our proposed
scoring function consists of post-hoc operations which is instantly
applicable without re-training.

Index Terms—Out-of-distribution Detection, Deep Learning,
Classification, Uncertainty

I. INTRODUCTION

The open-world environment is full and unknowns, posing
great challenges for deep networks that are required to handle
diverse inputs reliably. Out-of-distribution (OOD) problem
arises when a network encounters data beyond the semantics
of instances with which it was trained. The detection of such
anomalous examples is crucial for preventing the malfunctions
and ensuring the error-free delivery of deep networks, which
cannot be neglected in safety-critical applications such as
autonomous driving [1]–[4] and medical analysis [5]–[7].
Recently, a plethora of researches have studied the issue of
out-of-distribution detection [8]–[13].

The standard concept for OOD detection is to derive a
scoring function from the mature networks such that the OOD
samples relatively exhibit higher scores than in-distribution
(ID) samples. Researchers have been designing many of such
functions by exploiting the uniqueness of ID-ness or vice
versa. One popular paradigm is to derive scores according
to the output signal of classification networks, including: (i)
”probability”, such as maximum softmax probabilities [8],
minimum KL-divergence between softmax and mean class-
conditional distributions [12]; (ii) ”logit”, such as energy

function [10], maximum logits [12]. These classifier-based
approaches fully leverage the class-dependent information of
ID samples for fine-grained detection capability. However,
their ignorance of the feature space disregards class-agnostic
information [14] which may not affect classification but de-
pict the distinction between ID and OOD samples. Hence,
the classifier-based scores are possibly vulnerable to model
overconfidence, hindering OOD detection [15].

On the other hand, the distance-based approaches, such as
the similarity to nearest neighbors [16], the norm of residual
between the feature and the pre-image of its low-dimensional
embedding [17], detect OOD samples based on their distance
to ID data in the feature space. These approaches exclusively
exploit features which provide class-agnostic information to
address the overconfidence issues in OOD detection. Unfortu-
nately, these scores, without class-dependent nature, struggle
to distinguish subtle differences between samples and ID
classes, limiting fine-grained detection capability [18]. Fur-
thermore, we argue that utilizing solely either the residual or
the distance to nearest neighbors may not capable of revealing
the ”sufficient” distance of a sample to ID data. Intuitively,
the residual relies on assumptions about the data distribution
since the feature space can only be induced using observed
data, while nearest neighbors is non-parametric but be fragile
to noise and bounded to the locality.

Motivated by such diverse factors that manifests in OOD
detection, we propose Nearest Neighbors with Null Space
Analysis (k-NNuSA), a generalized distance-focused approach
that leverages not only the distance to nearest neighbors within
ID distribution but also the residual of feature against ID
principal subspace to filter OOD samples out of the database.
We then scale the generalized distance based on the confidence
of classification to improve its fine-graininess. Built upon
this construction, k-NNuSA will tend to assign a sample,
which more uncertain and distant to either hyperplane or
neighborhood of ID data, as OOD.

We extensively validate the OOD detection capability of our
proposed method across various models and datasets, using
ImageNet-1K as the ID reference. The model architectures
range from CNN-based networks, including legacy ResNet-
50 [19], recent BiT [20] and RepVGG [21], to transformer-
based networks, including ViT [22], DeiT [23] and Swin
Transformer [24]. The experiments on four different OOD
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Fig. 1. The architecture of k-NNuSA. The principal subspace P is induced by the features of ID reference data Z = {zi}ni=1 beforehand, with n as the
sample size. During inference, the model produces a feature x for the input image. The distances to the hyperplane P and k nearest neighbors in projection
are measured and scaled with the confidence of model prediction. The final output is a score indicating the increasing possibility that the input is OOD.

datasets, including OpenImage-O, ImageNet-O, Texture and
iNaturalist, demonstrates that k-NNuSA achieves the state-of-
the-art performance of average 92.09% AUROC and 39.53%
FPR95 against previous approaches over a wide variety of
scenarios of OOD detection.

Our contributions are twofold. (i) We propose a generic
scoring function, abbreviated as Nearest Neighbors with Null
Space Analysis (k-NNuSA), that incorporates both distances
to nearest neighbors and ID manifold scaled with the network
confidence to reliably detect OOD for a large range of datasets
and models. k-NNuSA is instant-applied, requiring neither
extra OOD reference nor expensive re-training. (ii) We conduct
comprehensive experiments on the ImageNet-1K benchmark
with multiple OOD datasets and model architectures, consist-
ing of CNN-based and transformer-based vision models, to
assess thoroughly the detection capability of k-NNuSA. Here,
our proposed method manages to achieve the state-of-the-art
results over many previous works.

II. METHODOLOGY

We present Nearest Neighbors with Null Space Analysis (k-
NNuSA), a generalized distance-focused scoring function for
OOD detection that measures whether an image is OOD using
the unified distances to nearest neighbors and ID principal
subspace. Fig. 1 depicts the general framework of k-NNuSA.
For a feature x, we (i) compute the residual xP⊥

against the
principal subspace P; (ii) compute the average distance to
k nearest neighbors; (iii) estimate how confident the model
predicts the input image; (iv) aggregate and scale the distance
and residual by the confidence of model prediction. The output
is k-NNuSA score that is expected to be higher if the input
image is potentially OOD. Without specified, we consider Z ∈
Rn×d as the ID reference set; W and b as the weight and bias
of classification head, respectively.

A. Residual from the Principal Subspace

We consider a classification problem of C classes, whose
logit l ∈ RC is projected from the feature z ∈ Rd, i.e.
l = W�z + b. We safely omit the bias term b by shift-
ing the coordinate system of feature space to a new origin
o � −(W�)+b, where (·)+ is the Moore-Penrose inverse.
We abuse Z to define the shifted ID reference set, where
rows are features in the new coordinate system with origin
o. Accordingly, we formulate the eigendecomposition on the
matrix Z�Z, as follows:

Z�Z = QΛQ−1 (1)

where Q is the square of n× n matrix whose i-th column
is the eigenvector qi of Z�Z and Λ is the diagonal matrix
whose diagonal elements are the corresponding eigenvalues
Λii = λi, sorted descendingly. Therefore, we obtain the D-
dimensional principal subspace P spanned from the first D
eigenvectors in Q. The principal subspace P presents only
principal components of the original ID feature space and
possibly reduces its noises and unnecessary details.

Given an image feature x ∈ Rd, we decompose x = xP +
xP⊥

, where the residual xP⊥
is the projection of x onto the

null space P⊥. We can compute the residual using the rest of
eigenvectors from (D+1)-th to the last column in Q, which is
extracted as a new matrix R ∈ Rd×(d−D). Here, the residual
xP⊥

is of the closed form:

xP⊥
= RR�x (2)

We use the norm of the residual ‖xP⊥‖ to measure how
distant the image feature x is to the ID manifold, which reveals
the OOD-ness of the corresponding input.
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Fig. 2. The class-wise nearest neighbors of principal feature xP. The model
predicts xP as red triangle with low confidence. The dotted lines represent the
decision boundaries between ID classes. The dashed arrows are the distances
of xP to nearest neighbors regardless of different classes. The solid arrows
are the distances of xP to the nearest neighbors of the same class (i.e., red
triangle). One can see that the norm of the solid lines are larger than that of
dashed ones.

B. Distance to the Class-wise Neighborhood

Based on the formulation in Eq. 1 and 2, the residual xP⊥

depends on the observed ID reference set Z with an assump-
tion that the principal subspace P is capable of representing
the vast majority of ID population. In other words, the residual
is a parametric scoring method and may not generalize well
when the ID data turns dynamic (e.g., translated, rotated,
...) over time. Therefore, we address this potential pitfall by
assessing additional distances of an image feature x to its
nearest ID neighbors.

To make the measurement robust, we derive the distance
of x to its neighborhood upon the principal space P which
consists of more essential and less noisy information. Partic-
ularly, the OOD-ness of the image feature x is determined
by the average dissimilarity of xP to the k projected nearest
neighbors {zP1 , ..., zPk }, that have the same class cx predicted
for x, in the ID reference set Z:

NP(x) =
1

k

k∑
i=1

d(xP, zP(i)), ∀z(i) ∈ Zx (3)

where d is the dissimilarity function and the subset Zx ∈ Z
consists of ID references of class cx. We simply use L2-
distance for d in experiments. The reordered index (i) is given
in the ascending order of distance from the reference z(i) to the
principal feature xP. We recognize the presence of near-OOD
instances [18] which may occur in small intermediate regions
between ID classes. Fig. 2 depicts a calling example: xP are
close to the decision boundary, meaning that x is likely to be
OOD. Here we can observe that the norm of dashed arrows
and the shortest solid arrow of common nearest neighbors
are smaller than that of solid lines of the class-wise nearest
neighbors. Hence, the latter can exhibit a higher score for x
and be more capable of fine-grained detection. Inspired from
this observation, we prefer class-wise nearest neighbors as in
the formula in Eq. 3.

C. Nearest Neighbors with Null Space Analysis

Given the residual norm ‖xP⊥‖ and the average distance
to class-wise neighborhood NP(x), we define the generalized
distance-focused score DP to ID distribution as follows:

DP(x) = H(p(x)) · (NP(x) + ‖xP⊥
‖) (4)

where H(p) =
∑C

c=1 p
γ
c (1−pc)

γ [26], given the probability
vector p = (pc)

C
c=1 with p = softmax(l). H(p) is the entropy

measuring the confidence of predicted probability p(x) for
the image feature x. Thanks to the entropic term H(p), the
two distances in DP of higher confidence x are scaled down
and vice versa, providing the fine-graininess for the scoring
function in OOD detection. Eq. 4 reveals that if a feature x
deviates from either the ID manifold or its neighborhood, it
is more likely to be OOD. The computational overhead is
minimized as k-NNuSA solely utilize the features and outputs
of the classification head which the model has pre-computed
during its inference.

Following the post-analysis of ViM [13], we additionally
attach the energy-based score [10] to DP(x), that formulates
the overall k-NNuSA score, of the form:

k-NNuSA(x) = DP(x)− ln

C∑
c=1

elc (5)

On the one hand, we complete the energy score by adding
diverse class-agnostic information, including the residual and
the neighborhood. On the other hand, we observe that k-
NNuSA achieves superior performance with the addition of
this energy score that also emphasizes the fine-grained detec-
tion capability in scoring function.

III. EXPERIMENTS AND RESULTS

This section illustrates our empirical investigations on the
detection capability of k-NNuSA in comparison with the
representative works, including ViM [13], residual [13], Grad-
Norm [25], ReAct [11], Energy [10], Mahalanobis [9], KL-
Matching [12], MaxLogit [12] and MSP [8]. We evaluate all
the algorithms on large-scale OOD detection, ImageNet-1K
benchmark, using Texture [27], iNaturalist [28], OpenImage-
O [13] and ImageNet-O [29] as the OOD datasets. The feature
extractors used consist of transformer-based and CNN-based
pretrained vision models, that produces feature spaces of
diverse quality and characteristics.

A. Evaluation Metrics

We compare the detection capability of scoring functions in
terms of two popular metrics: AUROC (%) and FPR95 (%).
AUROC is threshold-free and measures the area under the
receiver operating characteristic curve. A larger area signifies
better detection performance. FPR95 stands for the false
positive rate at a 95% true positive rate, which means a smaller
FPR95 indicates better performance.
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TABLE I
THE PERFORMANCE OF k-NNUSA AND PREVIOUS WORKS FOR OOD DETECTION

Dataset Texture iNaturalist OpenImage-O ImageNet-O Average
Model Detection AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓

BiT

MSP [8] 79.80 76.67 87.92 64.08 83.05 76.10 57.12 96.85 76.97 78.42
MaxLogit [12] 81.65 73.72 86.76 70.60 82.30 79.86 63.01 96.85 78.43 80.26
KL-Matching [12] 86.91 51.02 92.95 33.28 87.93 54.82 65.68 86.65 83.37 56.44
Mahalanobis [9] 97.33 14.05 85.70 64.95 82.62 66.24 80.37 70.05 86.50 53.82
Energy [10] 81.09 73.89 84.48 74.97 80.55 82.04 63.59 96.40 77.43 81.82
ReAct [11] 90.64 50.25 91.45 48.60 85.37 67.66 67.07 91.70 83.63 64.55
GradNorm [25] 83.06 55.68 85.95 58.74 70.64 79.44 53.82 91.80 73.37 71.41
Residual [13] 97.66 11.18 76.76 80.43 80.18 68.09 81.57 65.55 84.04 56.31
ViM [13] 98.92 4.69 89.30 55.68 89.94 49.23 83.87 61.50 90.51 42.77
k-NNuSA 98.31 4.18 93.03 47.39 92.27 42.37 84.75 64.20 92.09 39.53

ViT

MSP [8] 87.10 48.55 96.11 19.05 92.16 34.99 81.86 64.90 89.31 41.87
MaxLogit [12] 93.01 30.58 98.56 6.57 96.72 16.59 89.85 44.10 94.53 24.46
KL-Matching [12] 88.76 44.09 96.87 14.78 93.45 29.59 84.12 55.65 90.80 36.03
Mahalanobis [9] 94.24 25.17 99.54 2.12 97.34 14.18 92.81 36.95 95.98 19.60
Energy [10] 93.38 28.24 98.65 6.15 96.99 14.77 90.46 41.25 94.87 22.60
ReAct [11] 93.34 28.49 99.00 4.30 97.14 14.68 90.70 42.60 95.04 22.52
GradNorm [25] 89.68 34.48 97.32 8.58 93.76 21.03 80.28 50.90 90.26 28.75
Residual [13] 92.21 33.82 98.56 6.63 91.87 36.37 88.23 47.85 92.72 31.17
ViM [13] 95.34 20.31 99.41 2.61 97.30 14.33 92.55 36.75 96.15 18.50
k-NNuSA 95.76 23.40 98.95 2.76 97.47 14.17 92.69 37.05 96.23 19.34

(1) The experiments take ImageNet-1K as the ID dataset and Texture, iNaturalList, OpenImage-O, ImageNet-O as the OOD datasets.
(2) AUROC and FPR95 are measured in percentage (%).
(3) The best performance is in bold and 2nd ones are underlined.

B. Experimental Settings

BiT (Big Transfer) [20] is an enhanced variant of the
ResNet-v2 architecture, incorporating group normalization and
weight standardization to improve performance. For CNN-
based approach, we utilize the BiT-S model series, pretrained
on the ImageNet-1K dataset, which is the BiT-S-R101×1
model on its officially released checkpoint. On the other
hand, ViT (Vision Transformer) [22] represents a transformer-
based approach to image classification, treating images as
sequences of non-overlapping patches. For our analysis, we
use the pretrained ViT-B/16 model, which has been fine-
tuned on ImageNet-1K. We also report the performance of our
method on other vision architectures, namely ResNet-50 [19],
RepVGG [21], Swin [24] and DeiT [23]. All OOD algorithms
in comparison do not require re-training the models.

For the setting k-NNuSA, we use k = 10 nearest neighbors
to average the distance of image features to its neighborhood.
The entropy H(·) works with γ = 0.1 which is commonly
set for softmax temperature [30], [31]. We configure other
methods included in our experiments with the best settings
mentioned in their papers.

C. Results and Discussions

In TABLE I, we summarize the results of OOD detection
algorithms in ImageNet-1K benchmark using two vision mod-
els ViT-B/16 and BiT-S-R101×1. One can see that k-NNuSA
achieves performance comparable to that of the state-of-the-art
approaches in OOD detection.

a) BiT-S-R101×1: On average, our method k-NNuSA
reaches 92.02% AUROC and 39.53% FPR95, which surpasses
the second-performing method ViM by more than 2% and 3%,
respectively. Over 5 of 8 comparisons across the four datasets,

we achieve the largest AUROC and smallest FPR95, compared
to other methods. In Eq. 4, k-NNuSA includes the combination
of the residual and distance to nearest neighbors. TABLE I
shows that we significantly outperform both Residual on all
the datasets and Mahalanobis on three fourth of the datasets.
Notably, iNaturalist has the least informative residual, since the
average norm of residual is much less than that of residual on
other datasets [13]. As expected, Residual struggles to detect
iNaturalist images. Yet our proposed method which comes
with the additional information on class-wise neighborhood
alleviates the pitfall successfully and lands comparable per-
formance to Mahalanobis. Interestingly, Mahalanobis utilizes
a single source of distance, that is the minimum distance
between the feature and the class centroids. Such a distance
quite resembles our distance to class-wise neighborhood and
explains the observation that the two methods can perform
seamlessly on iNaturalist. Mahalanobis is, however, far behind
k-NNuSA on the other datasets where we continue our dom-
ination thanks to the residual ‖xP⊥‖ and confidence scaling
H(p). This result empirically verifies the effectiveness of our
non-trivially distance-focused score DP in Eq. 4.

b) ViT-B/16: Since ViT-B/16 is pretrained on ImageNet-
21K dataset, it offers much more rich contextual embeddings,
compared to BiT. Hence, the performance of OOD detection
algorithms relatively converge. Observing the results of ViM,
Mahalanobis and k-NNuSA, we can see that these methods
share similar detection capability across the datasets. Notably
on average, both AUROC and FPR95 of all methods improves
drastically thanks to that rich contextual embeddings. Despite
performing poorly with BiT, Mahalanobis, a distance-based
scoring function, surpasses the fused scoring function ViM
on OpenImage-O, ImageNet-O and iNaturalist. Nevertheless,
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TABLE II
ADDITIONAL RESULTS OF OOD DETECTION METHODS WITH REPVGG, RESNET-50D, SWIN TRANSFORMER AND DEIT.

CNN Transformer
RepVGG ResNet-50d Swin DeiT AverageMethod

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP [8] 78.02 70.68 78.01 67.96 87.57 43.38 79.43 66.31 80.75 62.08
MaxLogit [12] 77.48 73.63 75.5 69.19 88.44 35.29 76.77 64.43 79.55 60.63
KL-Matching [12] 81.28 61.74 82.67 64.46 88.85 46.94 83.44 64.81 84.06 59.49
Mahalanobis [9] 85.93 59.72 88.12 56.43 92.1 40.81 85.07 72.8 87.80 57.44
Energy [10] 76.29 79.04 71.28 77.96 87.84 34.95 72.82 69.93 77.06 65.47
ReAct [11] 49.11 98.96 82.97 58.44 90.2 31.28 77.39 66.77 74.92 63.86
GradNorm [25] 52.97 95.03 44.04 96.03 41.65 84.53 32.1 97.44 42.69 93.26
Residual [13] 83.99 59.42 86.72 59.33 92.82 37.75 84.17 73.96 86.92 57.61
ViM [13] 87.66 50.84 89.03 53.36 94.08 31.23 85.27 69.75 89.01 51.29
k-NNuSA 87.82 51.35 89.08 52.96 94.15 31.15 86.21 68.76 89.31 51.05
(1) The experiments are in ImageNet-1K benchmark. Only the average AUROC and FPR95 are reported.
(2) AUROC and FPR95 are measured in percentage (%).
(3) The best performance is in bold and 2nd ones are underlined.

Fig. 3. Ablation study of k-NNuSA. The unified scoring function in Eq. 5
(k-NNuSA) is compared with single components of it, including Residual
(‖xP⊥‖), GEN (HP), Residual+NN (DP). Reported in AUROC↑ (%). The
blue marks represent the results of OOD detection with BiT and the red ones
do with ViT. k-NNuSA stands out from its single components.

Mahalanobis fails shortly on Texture and OpenImage-O due to
its lack of fine-graininess. Texture has a portion of images that
are indistinguishable from ID samples [32] while OpenImage-
O features have much more diverse distribution and semantics
[13]. In such cases, classifier-based information is of impor-
tance to OOD detection; thus k-NNuSA scales its distances
based on the confidence H(p) and varies following the energy
of the prediction logsumexp. Empirically, our method remains
competitive regardless of different data characteristics and
feature quality.

c) Other Architectures: TABLE II demonstrates more re-
sults of ImageNet-1K benchmark on different recent model ar-
chitectures. To be specific, we select two CNN-based represen-
tatives RepVGG [7] and ResNet-50d [11] and two transformer-
based representatives Swin Transformer [26] and DeiT [33].
We report their average AUROC and FPR95 over the four

OOD datasets. Our proposed method, k-NNuSA achieves the
state-of-the-art performance regardless of the architectures
used for feature space. On average, k-NNuSA achieves the
largest AUROC 89.31% and the smallest FPR95 51.05% over
all the OOD detection methods in comparison.

d) Ablation Study: Fig. 3 illustrates the comparison
between the full-fledge k-NNuSA in Eq. 5 and the scoring
functions that are parts of it. For the datasets, we involve
OpenImage-O, which has diverse contexts and the least in-
formative residual, and ImageNet-O, which has the largest
norm of residual on average [13]. As expected, Residual
and GEN perform poorly on one of the two datasets due
to their singleness of information source; i.e. features and
probabilities, respectively. We then add the distance to class-
wise neighborhood NP which then works seamlessly on the
diversity of OpenImage-O. However, Residual+NN appears
less robust and falls behind with using solely residual (approx.
1%) on lower-quality features of BiT. We thus improves
the fine-graininess by adding GEN, followed by the energy-
based score, to Residual+NN and construct the outstanding
k-NNuSA which remains robustness and achieves the best
performance over the former regardless of feature spaces.

IV. CONCLUSION

In this work, we introduce a generalized distance-focused
scoring function for OOD detection: Nearest Neighbors with
Null Space Analysis (k-NNuSA). This method utilizes both
distance to nearest neighbors and residual from the principal
feature subspace of ID reference. By scaling the combination
of these two distances based on classification confidence, k-
NNuSA provides more fine-grained detection capability. We
hold a series of extensive experiments across a diverse set
of models and datasets, which demonstrates that k-NNuSA
consistently outperforms existing methods, achieving the state-
of-the-art performance with an average 96.23% AUROC and
19.34% FPR95 using ViT architectures. The results verify
the efficiency of our non-trivially combined scoring function
regardless of datasets and models.
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