
Leveraging Multiple PRF Radar for Target
Detection and Sea Clutter Suppression with Deep

Learning Network
Hyeonho Noh∗, Seong-Ryeol Park†, Wonmin Cho‡, Kyung-Tae Kim†, and Hyun Jong Yang∗

∗Department of Electrical and Computer Engineering, Seoul National University, Korea
†Department of Electrical Engineering, Pohang University of Science and Technology, Korea

‡Agency for Defense Development, Daejeon, Korea
{hyeonho, psr4035, kkt}@postech.ac.kr, hobbit97@add.re.kr, hjyang@snu.ac.kr

Abstract—In this paper, we propose a deep learning-based
network that combines multiple pulse repetition frequency (PRF)
and velocity resolution uniformization (VRU) techniques to im-
prove target detection in the presence of sea clutter, particularly
in scenarios with limited datasets. Multiple PRF enhances the
ability to distinguish between clutter and target signals by col-
lecting data across various frequency bands, while VRU increases
the uniformity of this data, thereby improving the model’s
generalization performance. Simulation results demonstrate that
the proposed method achieves superior detection performance
compared to existing techniques.

Index Terms—multiple PRFs, sea clutter, deep learning, veloc-
ity resolution uniformization

I. INTRODUCTION

Deep learning is a highly effective tool for identifying
patterns and relationships in large datasets, allowing for the
resolution of complex and nonlinear problems. In the fields
of communications and radar, deep learning has significantly
advanced technology by enabling the handling of vast amounts
of data and diverse variables that are challenging for traditional
methods [1], [2]. Specifically, while traditional radar signal
processing relies on manual pattern recognition [3], deep learn-
ing enables the effective analysis of complex radar signals,
improving accuracy even in noisy environments [4].

The effectiveness of deep learning relies on large datasets,
which are often difficult to obtain in real radar applications due
to time and cost constraints [5]. An example is maritime target
detection in the presence of sea clutter, which is influenced by
waves, ocean reflections, and weather conditions [6], as shown
in Fig. 1. They create complex and nonlinear noise that can
obscure or distort target signals. Although deep learning has
the potential to improve detection, the high cost and limited
availability of datasets hinder practical model training.

In this paper, we propose a deep learning network that
utilizes multiple pulse repetition frequency (PRF) techniques
to improve target detection in sea clutter environments, even
with limited datasets. The use of multiple PRFs offers two
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Fig. 1: Range-time intensity map showing sea clutter patterns
in radar signals

main benefits: 1) From a radar signal perspective, different
PRFs yield radar images with varying velocity resolutions,
resolving aliasing issues or supporting frequency hoping [7].
2) From a model training perspective, multiple PRFs provide
diverse features, enabling the model to better learn complex
data distributions and generalize more accurately to target
presence under various conditions. This is especially useful
with limited datasets, as it reduces overfitting and allows for
more robust feature extraction [8].

Deep learning networks generally handle a fixed-size input,
but radar images obtained from multiple PRFs have different
velocity resolutions, resulting in varied sizes and patterns
for the same target and clutter. This variation complicates
the generalization process during the network’s training. To
address this, we propose a velocity resolution uniformization
(VRU) technique. This technique enhances the uniformity of
data obtained from multiple PRFs, significantly improving
the generalization performance of the deep learning network.
Simulation results show that the proposed method, which uses
multiple PRFs and VRU, outperforms existing techniques.

II. SCENARIO AND PRE-PROCESSING

In this section, we present a radar system scenario that
utilizes multiple PRFs for more accurate target detection,
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Fig. 2: Process of velocity resolution uniformization and RD map slicing for multiple PRF radar data
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Fig. 3: Comparison of RD maps for target detection in Sea Clutter: (a) ∆veff = 6.5935 m/s, (b) ∆veff = 9.8901 m/s, and (c)
∆veff = 14.2857 m/s

rather than relying on a single PRF. We then introduce a
customized pre-processing method for applying these multiple
PRF radar images to a deep learning network.

A. Radar System Scenario

We consider a scenario in which a mono-static radar aboard
a ship detects maritime radar targets. Unlike ground target
detection, maritime radar target detection is hindered by a
unique type of clutter caused by waves. Maritime clutter
consists of two components: texture and speckle. The texture
component is associated with gravity waves and represents
the mean intensity, while the speckle component is related to
capillary waves and reflects the Doppler characteristics.

To detect the range and velocity of targets, radar data
collected through multiple PRF signals is transformed from
the range-time domain to the range-Doppler domain, produc-
ing a range-Doppler map (RD map). This transformation is
achieved by performing a Fourier transform along the time
axis. However, the obtained RD map is heavily contaminated
by the sidelobes of maritime clutter, making target detection
very challenging. To mitigate the effects of clutter sidelobes,
we applied a Hanning window.

It is worth noting that although the multiple RD maps
obtained through multiple PRFs are used to detect the same

targets, they exhibit different characteristics. Specifically, the
varying PRFs result in different velocity resolutions. The
effective velocity resolution is determined by ∆veff = fλ/2N ,
where λ is the wavelength, f is the PRF, and N is the number
of pulses. The differing velocity resolutions allow one RD
map to resolve velocity ambiguities that may occur in another
PRF’s RD map. As a result, a system utilizing multiple PRFs
can enhance velocity resolution and improve the ability to
separate and track multiple targets effectively.

B. Pre-processing for multiple PRF

The RD maps obtained from multiple PRF radar signals
each have different velocity resolutions and unambiguous ve-
locities. However, image-based deep learning networks, such
as CNNs, require input data to have a fixed size, so all RD
maps must be standardized to the same image size. Therefore,
we unify the range and velocity axes of the different RD maps
to achieve consistent sizes. Fig. 2 illustrates the process of
unifying RD map sizes along the range and Doppler axes.

Range axis: Since all radar signals use the same bandwidth,
the range resolution remains consistent, but the unambiguous
range differs due to varying PRFs. To create uniformly sized
data along the range axis, we adjust the data size to match
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Fig. 4: U-Net architecture for sea clutter suppression and target detection in RD maps

the RD map with the smallest unambiguous range, which
corresponds to the radar signal with the highest PRF.

Doppler axis: Unlike the uniform range resolution, both the
velocity resolution and unambiguous velocity resolution de-
pend on the PRF. Specifically, the velocity resolution increases
proportionally with the PRF when the number of pulses is the
same. To match the sizes of the RD maps along the Doppler
axis for different PRFs, we artificially add zero pulses and then
perform a Fourier transform along the Doppler axis to achieve
similar range resolutions. To fine-tune minor discrepancies,
interpolation can be applied to precisely adjust the Doppler
axis size of each RD map. Finally, we standardize the image
sizes by slicing them according to the lowest unambiguous
velocity.

Although zero-padding increases the RD map size and
aligns the velocity resolution for resizing, the effective velocity
resolution remains unchanged. As shown in Fig. 3, the physical
velocity resolution differs according to PRF, even though the
image sizes are the same. It’s important to note that data
representing the same target and clutter will have different
representations on the RD map depending on the PRF. In deep
learning training, such varied representations of the same label
can slow convergence or even destabilize the learning process.

C. Velocity Resolution Uniformization

To achieve uniformization of data with different represen-
tations due to varying PRFs, despite having the same label,
we employed a technique called VRU. VRU is a method
that artificially unifies the effective velocity resolution by
intentionally reducing the number of pulses in RD maps
with higher effective velocity resolutions and adding zero-
padding. For example, as shown in Fig. 2, during the process
of uniformizing the RD map sizes, we reduce the number
of pulses in the PRF 2 RD map and add zero-padding to
artificially lower its effective velocity resolution, making it
similar to the RD map from PRF 1.

While VRU increases data uniformization, it also leads to
information loss since it involves the deliberate removal of
informative pulses. Therefore, there is a trade-off between the
improved learning efficiency gained through data uniformiza-
tion and the potential degradation in detection performance
due to information loss. In this paper, we explore this trade-
off through simulations in Section 4.

III. DEEP LEARNING NETWORK FOR TARGET DETECTION

A. Network Structure
To remove clutter and extract targets from RD maps where

both clutter and targets are present, we utilized a U-Net archi-
tecture [9], commonly used in fields such as image restoration,
image generation, style transfer, and noise/interference sup-
pression. The encoder-decoder structure of U-Net effectively
learns both low-level and high-level features of an image.
The encoder extracts important features from the input image,
while the decoder generates the desired output based on
these features. Through this process, U-Net can suppress
unnecessary information, such as sea clutter, and emphasize
the information needed for target detection.

Leveraging a classical U-Net structure, we constructed a
network for sea clutter suppression and target detection, as
shown in Fig. 4. The proposed U-Net takes RD maps with
three different PRF values as input, treating each RD map as
a separate channel, similar to how RGB images are processed.
This multi-channel input approach can aid in the convergence
of network training by facilitating feature extraction across
channels. The input images are then processed through a
convolutional neural network (CNN) to extract features of both
targets and sea clutter. Since RD maps include not only clutter
and targets but also regions with no signals, we apply max-
pooling to reduce the spatial dimensions. Pooling preserves
key features while discarding unnecessary ones, improving
the network’s ability to distinguish between target and clutter
features. Additionally, since image data involves handling
large amounts of high-resolution data, the pooling process
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TABLE I: Parameter and effective velocity resolution of training and test datasets

Training datasets Test datasets

Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

PRF [kHz] 12 18 26 12 12 12
Number of pulses 91 91 91 91 61 41

Effective velocity resolution [m/s] 6.5934 9.8901 14.2857 6.5934 9.8361 14.6341

Training datasets with VRU Test datasets with VRU

Dataset 1 Dataset 2 Dataset 3 Dataset 1 Dataset 2 Dataset 3

PRF [kHz] 12 18 26 12 12 12
Number of pulses 40 60 87 41 41 41

Effective velocity resolution [m/s] 15.0 15.0 14.9425 14.6341 14.6341 14.6341

is crucial for enhancing computational efficiency by reducing
dimensions. This reduction in dimensions allows the network
to use memory more efficiently and increases computational
speed, enabling the use of deeper network structures, which are
helpful in learning more complex patterns. At the lowest layer
of the U-Net, after sufficient feature extraction, the network
distinguishes between target and clutter features, removing
clutter features and retaining only target features. The output
is then upscaled to restore the original RD map size. The final
output RD map highlights the areas where targets are predicted
to be present. Since the input and output RD maps are of the
same size, the range and velocity of the targets can be easily
calculated.

B. Training Process

To train the proposed U-Net for sea clutter suppression and
target detection, we used a supervised learning framework. We
generated the ground truth by creating a binary matrix from the
input RD map, where pixels containing targets were assigned
a value of 1, and all others were assigned a value of 0. It
is important to note that target distributions in RD maps are
generally very sparse. This means that the number of target
points is very small compared to the total data points, leading
to data imbalance. To address this imbalance, we employed
focal loss during training. Focal loss helps the model focus
more on difficult-to-classify examples (the sparse target points)
while paying less attention to easy-to-classify examples (the
abundant non-target points). Let the output RD map generated
by the proposed U-Net be denoted as R, and the ground truth
RD map as G. The focal loss is calculated by

Lfocal(R,G) = −
M−1∑
µ=0

N−1∑
n=0

(1− rn,µ)
γ log(rn,µ), (1)

where γ is the tunable focusing parameter, M is the number
of sample points in fast-time axis, N is the number of pulses,
rn,µ = [R](n,µ) if [G](n,µ) = 1 and rn,µ = 1 − [R](n,µ)
otherwise, and [R](n,µ) is the (n, µ)-th element of a matrix
R. By training with this method, the output of the U-Net-

(a) Training datasets without VRU

(b) Training datasets with VRU

Fig. 5: ROC curves for target detection performance with a
single radar target

based network is an RD map with values between 0 and 1,
where each pixel’s value represents the probability of a target
being present at that location.

IV. SIMULATION RESULTS

In this section, we investigate the ability of VRU to enhance
the generalization performance of deep learning models by
uniformizing RD maps obtained through multiple PRFs. We
modeled sea clutter using radar signals captured off the coast
of Namjeong-myeon, Yeongdeok-gun, South Korea, and used
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(a) Training datasets without VRU

(b) Training datasets with VRU

Fig. 6: ROC curves for target detection performance with three
multiple radar targets

these signals to create both the training and test datasets. The
training dataset size is 1500, including all multiple PRFs, while
the test dataset consists of 125 samples. We used a carrier
frequency of 3 GHz for all datasets, with the PRFs and number
of pulses summarized in Table I.

Unlike traditional constant false alarm rate (CFAR) meth-
ods, the proposed U-Net-based network cannot theoretically
determine the detection threshold based on the false alarm
probability. Therefore, considering that the U-Net outputs an
RD map with values between 0 and 1 after sea clutter sup-
pression, we incrementally adjusted the threshold value from
0 to 1 to calculate the corresponding false alarm probability
and detection probability, thereby evaluating the detection
performance.

Fig. 5 shows the detection probability as a function of
false alarm probability in the form of a receiver operating
characteristic (ROC) curve for a single target. For all false
alarm probabilities, the proposed U-Net-based network out-
performs the CFAR approach. In the network trained without
VRU, the detection probability is high for test data with a
relatively low effective velocity resolution, but decreases as the
effective velocity resolution increases. In contrast, the network
trained with VRU can transform all test data to have a velocity
resolution similar to that used in training, thereby improving
detection performance. Remarkably, it even outperforms the
detection performance measured on low velocity resolution
data without VRU. This suggests that despite the information

loss, VRU improves the generalization capability of the net-
work, leading to enhanced radar target detection performance.
Additionally, the results indicate that a network trained with
VRU can maintain high detection performance even with a
reduced number of radar pulses. This implies that in real-
world operations, the number of pulses required to gather
target information can be reduced, allowing for faster scans.

Since the presence of multiple targets is more common in
real scenarios, we also generated ROC curves for test datasets
containing three radar targets, as shown in Fig. 6. Similar to the
previous simulations, the U-Net-based network consistently
outperforms the CFAR approach across all levels of false
alarm probability. It is also important to note that, as in the
previous experiment, the training dataset contains only a single
radar target, making multiple targets an unseen case for the
deep learning network. The detection performance for multiple
targets, whether using VRU or not, shows a similar trend to
that of a single target.

V. CONCLUSION

This paper proposed a deep learning network using multiple
PRFs and the VRU technique to improve target detection in
sea clutter environments with limited datasets. Our approach
enhances data diversity and generalization, leading to better
target detection performance than existing methods. The re-
sults demonstrate the potential of combining multiple PRFs
and VRU for more accurate and robust radar systems.
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