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Abstract—Advancements and emergencies in consumer tech-
nologies such as 6G, virtual reality, augmented reality, and now
artificial intelligence put more demands on wireless communica-
tion networks to be able to accommodate the resulting large data
and low latency transmissions. In addition to the several ongoing
efforts to realize this goal, this work proposes the combination
of multiple-input multiple-output (MIMO), dynamic metasurface
antennas (DMA), and millimeter wave (mmWave) technologies to
optimize the downlink weighted sum rate (WSR) of the MIMO
system operating at the mmWave band, and whose users are
all equipped with DMA. We formulate the system model and
the associated WSR maximization problem, which is later solved
by the proposed algorithm designed to tackle the optimization
of each variable using novel techniques that guarantee fast
convergence. The numerical results demonstrate the effectiveness
of the proposed algorithm in achieving higher performance than
the conventional MIMO system with the same number of radio
frequency chains.

Index Terms—Metamaterials, dynamic metasurface antenna
(DMA), downlink MIMO communication, weighted sum rate
(WSR), 6G.

I. INTRODUCTION

Artificial intelligence (AI) is taking the world to the new
unprecedented technological shift that is envisioned to greatly
simplify several aspects of daily human activities. Just like the
industrial revolution in the 18th century, which was pivotal
in transitioning most procedural tasks into faster, efficient,
and reliable machines, the 21st century’s AI is aimed at
further simplification of challenging cognitive tasks that the
former machines could not handle [1], [2]. As the name
suggests, the core of AI technology is to give these machines,
through a technical process that we call in this work “model
training”, some human-like (artificial) intelligence such that
they can reason and take action based on the context under
consideration.

Looking at this technological shift through the lens of
wireless communication and signal processing reveals more
stringent demands in terms of large data transfer and low-
latency connectivity between the consuming user equipment
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by the NRF Grant funded by the Korean Government (MSIT) under Grant
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(UE) such as mobile phones, laptops, cars, etc., and the cloud
servers hosting the trained models1. Luckily, multiple-input
multiple-output (MIMO), a technology that uses multiple an-
tennas at the transmitter and/or the receiver [3], was proposed
in the early 2010s to enable wireless communication systems
to become a large data traffic bearer [4]. Essentially, MIMO
exploits the rich-scattering property of the wireless channel to
spatially multiplex multiple data streams and transmit them
simultaneously. In scenarios of poor-scattering channels, the
MIMO’s multiple antennas can be used to beamform the
signals in the desired direction, thereby creating a relatively
stronger signal at the receiver, thus allowing the use of high-
order modulation schemes that carry more bits per symbol,
hence achieving the same goal of higher data rate transmission.
The realization of multiple antennas at most UEs is, however,
still very challenging due to their small sizes and limited
power budgets, limiting them from accommodating the large
numbers of bulky and power-hungry radio frequency (RF)
chains needed to drive each attached antenna. To overcome this
issue, some previous efforts have resorted to hybrid systems
that employ fewer RF chains and connect them through a
network of phase shifters to a large number of antennas [5].

Noticing the use of extra circuitry of phase shifters in
hybrid systems, which does not greatly simplify the hard-
ware bulkiness of transceivers, this work takes a different
approach of replacing the traditional metallic antennas with
the metamaterial-inspired type of antenna called dynamic
metasurface antennas (DMA) [6] that aggregates multiple
transmitting/receiving elements within a waveguide structure
called microstrip and connects each microstrip to its own RF
chain [7]. Being derived from metamaterials, DMA brings
several advantages. First, its elements are known for their low
power consumption and small sizes, thus allowing them to be
packed in large amounts within space-limited UEs [8]. Sec-
ondly, it provides reconfigurability options for each element
[9], increasing the overall degree of freedom of the system
[10]. Lastly, it naturally achieves RF chain reduction without

1It is understood that some of these models can be deployed in the UEs
themselves; however, due to the sheer size of most of the models, the
complexity of their execution, and their frequent updating requirement, they
necessitate being hosted in large-storage and computationally powerful cloud
servers.

1171979-8-3503-6463-7/24/$31.00 ©2024 IEEE ICTC 2024



BS

DMATraditional
metallic

antennas

DMA

UE 1

UE K

Fig. 1: DMA-Based MU-MIMO communication system.

needing extra hardware—this greatly reduces the bulkiness and
power consumption of the resulting transceivers [11].

Contributions: There are various ways through which the
aforementioned advantages can be exploited. This work, how-
ever, focuses on the downlink weighted sum rate (WSR)
maximization of the multiuser (MU) MIMO system, where all
the users are equipped with DMA. We formulate the associated
system model and then the WSR maximization problem.
Finally, we propose efficient algorithms for optimizing each
user’s transmit precoder and DMA weights.

Notations: This work adopts the following notations.
Scalars, vectors, and matrices are respectively denoted by low-
ercase italic letters, boldface lowercase letters, and boldface
uppercase letters. The Euclidean norm and the i-th element
of vector a are denoted by ∥a∥ and [a]i, respectively. The
element at the i-th row and j-th column of the matrix A
is denoted by [A]i,j , whereas its determinant, inverse, trace,
and Frobenius norm are denoted by |A|, A−1, Tr (A), and
∥A∥F , respectively. An N ×N diagonal matrix with diagonal
elements x1, · · · , xN is denoted by diag (x1, · · · , xN ). The
indicator function and the operator that rounds its argument
to the nearest larger integer are denoted by �(·) and ⌈·⌉,
respectively. vec(A) vectorizes the matrix A by stacking [A]i
above [A]i+1.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this work, we consider a communication setup depicted in
Fig. 1, where a BS equipped with NB metallic antennas sends
signals to K users who use DMA as their receiving antennas.
The DMA of user u contains a total of Nu = Mu × Lu re-
ceiving antennas distributed across Mu microstrips, each con-
taining Lu elements. The DMA microstrips normally attenuate
the signal as it travels through them. This is, unfortunately, a
natural phenomenon that also occurs in many other mediums
like wireless channels. Therefore, a signal reaching element l
located at a distance ∂i,l from the input port of microstrip i
experiences the following amount of attenuation

hi,l = e−∂i,l(αi+jβi), (1)

where αi and βi denote the attenuation constant and the
wavenumber of the given microstrip, respectively. Another
characteristic property of DMA is the ability of its elements
to reconfigure their permeability and permittivity properties,
which, as a result, changes the amplitude and phase of the
interacting signal. This reconfiguration is governed by the
Lorentzian form, which, in the case of the element considered
in (1), is given by

qi,l =

{
j + ejθi,l

2

∣∣∣∣θi,l ∈ [0, 2π]

}
, (2)

with θi,l being its tunable phase shift. The parameter qi,l is
commonly referred to in the literature as the DMA config-
urable weight of element l of the i-th microstrip; thus, we call
it the same hereinafter. The DMA configurable weights and the
attenuation experienced by all Nu elements are conveniently
collected in matrices

[Qu]m,n ∈ CMu×Nu

=

{
qm,mod(n−1,Lu)+1, (m− 1)Lu + 1 ≤ n ≤ mLu,

0, otherwise
(3)

and
[Hu](i−1)Lu+l,(i−1)Lu+l ∈ CNu×Nu = hi,l, (4)

respectively, where m, i ∈ [1, · · · ,Mu], n ∈ [1, · · · , Nu], l ∈
[1, · · · , Lu], and mod(·, ·) is the modulus operator. The Πu =
min (NB ,Mu) unit-power data streams, su ∈ CΠu×1, for user
u are firstly precoded at the BS by a precoder F u ∈ CNB×Πu

to create the transmitted symbol

x ∈ CNB×1 =

K∑
u=1

F usu, (5)

which is then sent to all users with a power P . The signal
arriving at user u via the channel Gu ∈ CNu×NB , which
is assumed to be known after being estimated by techniques
such as [12], [13], is weighted by the weight of each element
and then guided through the attenuating microstrips to their
connected RF chains. The signal observed by the RF chains
of this user can be represented as

yu ∈ CMu×1 = QuHuGux+QuHuzu, (6)

where zu ∈ CNu×1 is the additive circularly symmetric white
Gaussian noise with zero mean and variance σ2

u. On top of zu,
in the perspective of user u, the signal QuHuGu

∑K
i̸=1 F isi

in (6) is interference and thus undesired. With such consider-
ation, the rate for this user is given as

Ru = log2

∣∣∣I +C−1
u QuHuGuKuG

H
u HH

u QH
u

∣∣∣ , (7)

where Ku = F uF
H
u , Cu = σ2

uQuHuH
H
u QH

u +
QuHuGu

∑K
i̸=u KiG

H
u HH

u QH
u , and I is an identity matrix.

In this work, we aim to find the transmit precoders and the
element weights of each user that maximize the WSR of
the system while ensuring the transmit power budget is not
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exceeded and all element weights follow (2). This problem is
mathematically formulated as

P(1) : max
Fu,Qu,∀u

K∑
u=1

ωuRu (8a)

s.t.
K∑

u=1

Tr (Ku) ≤ P, (8b)

(2), (8c)

where ωu is the priority of user u. In the next section, we lay
out the procedures for solving this problem.

III. PROPOSED SOLUTION TO P(1)

Notice that P(1) requires the optimization of two variables,
which can be seen in the objective function (7), to be tightly
coupled to one another. This coupling generally complicates
their joint optimization; thus, we propose to solve for one
variable at a time while fixing the other in its previous update
state. This procedure is described next.

A. Optimization of F u, u ∈ [1, · · · ,K] for fixed Qu

The subproblem resulting from the fixation of Qu takes the
following simplified form:

P(1-F u) : max
Fu,∀u

K∑
u=1

ωuRu (9a)

s.t.
K∑

u=1

Tr (Ku) ≤ P. (9b)

Next, we quote in Lemma 1 below a brief summary of Lemma
4.1 of [14], which is used to initiate the solution to problem
P(1-F u).

Lemma 1. For any arbitrary matrices M ∈ Cm×n and N ∈
Cn×l, and a positive definite matrix O ∈ Cm×m, the following
holds:

log
∣∣∣I +MNNHMHO−1

∣∣∣ = max
L,R

log |R|+ l

−Tr

(
R

(
I −LHMN

)(
I −LHMN

)H

+RLHOL

)
,

(10)

where L and a positive semidefinite matrix, R, are auxiliary
variables, whose solutions are given by

L̃ =
(
O +MNNHMH

)−1

MN (11)

and

R̃ =
(
I − L̃

H
MN

)−1

, (12)

respectively.

Note that the left-hand side of (10) and right-hand side of (7)
exhibit the structural similarity, which suggests that the results
of Lemma 1 can be used to recast P(1-F u) as follows:

P(1-F u) : min
Fu,V u,Wu

f1 (F u,V u,W u) (13a)

s.t.
K∑

u=1

Tr (Ku) ≤ P, (13b)

where

f1 (F u,V u,W u)

=
K∑

u=1

ωu Tr

(
W u

(
I − V H

u ḠuF u

)(
I − V H

u ḠuF u

)H
)

+

K∑
u=1

ωu Tr
(
W uV

H
u CuV u

)
−

K∑
u=1

ωu log2 |W u| (14)

is the new objective function derived from the right-hand side
of (10), and Ḡu = QuHuGu; V u and W u are the introduced
auxiliary variables, whose closed-form solutions given by

V u =
(
Cu + ḠuKuḠ

H
u

)−1

ḠuF u (15)

and

W u =
(
I − V H

u ḠuF u

)−1

, (16)

follow from (11) and (12), respectively. Unfortunately, the
solution of F u is still not that straightforward. To obtain its
tractable solution, we first fix V u and W u and apply the
Lagrange multiplier method to the resulting problem, i.e.,

∂

∂F u
f1 (F u,V u,W u) + µ

∂

∂F u

(
K∑

u=1

Tr (Ku)− P

)
= 0,

(17)
and solve for F u, which yields

F u = (µI +X)
−1

ωuḠ
H
u V uW u, (18)

where ∂
∂xg(x) denotes the derivative of g(x) with respect to x

and X =
∑K

u=1 ωuḠ
H
u V uW uV

H
u Ḡu. Here, the parameter µ

known as the Lagrange multiplier can be computed using one-
dimensional search techniques, e.g., bisection method, such
that

K∑
u=1

NB∑
i=1

[
ω2
uΨ

HḠ
H
u V uW

2
uV

H
u ḠuΨ

]
i,i(

[Σ]i,i + µ
)2 = P, (19)

which is an expanded and equality form of the power con-
straint (8b), is satisfied. In (19), the unitary matrix, Ψ, and
the diagonal matrix, Σ, are from the eigenvalue decompo-
sition (EVD) of X , i.e., X = ΨΣΨH . The procedure for
optimization of F u is organized in steps 3–7 of Algorithm 1.
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B. Optimization of Qu, u ∈ [1, · · · ,K] for fixed F u

Interestingly, the solution for P(2-Qu) after fixing F u is
still kick-started by the result of Lemma 1.

P(2-Qu) : max
Qu,∀u

K
u=1

ωuRu (20a)

s.t. (2). (20b)

Specifically, by letting Au and Bu be the auxiliary variables
that respectively correspond to L and R in (10), P(2-Qu) can
be transformed to its equivalent form

P(2-Qu) : min
Qu,Au,Bu,∀u

f2 (Qu,Au,Bu) (21a)

s.t. (2), (21b)

where

f2 (Qu,Au,Bu)

(a)
=

K
u=1

ωu Tr

Bu

�
I − Y uQ̄uΓu,u

 �
I − Y uQ̄uΓu,u

H

+

K
u=1

ωu Tr


BuY uQ̄u


σ2

uI +
K
i̸=u

Γu,iΓ
H
u,i


 Q̄

H
u Y H

u




−
K

u=1

ωu log2 |Bu| , (22)

Y u = AH
u H̄u, and Γu,i = GuF i. Moreover,


Q̄u


i,i

=

[Qu]⌈ i
Lu

⌉,i,

H̄u


⌈ i
Lu

⌉,i = [Hu]i,i for i ∈ {1, · · · , Nu}, and

(a) is due to the fact that H̄uQ̄u = QuHu. Similarly, as we
did earlier, the closed-form solutions for Au and Bu given by

Au =

Cu + H̄uQ̄uGuKuG

H
u Q̄

H
u H̄

H
u

−1

H̄uQ̄uGuF u

(23)
and

Bu =
�
I − Y uQ̄uΓu,u

−1
, (24)

follow from (11) and (12), respectively. To find Qu, we start by
examining the objective function (22) and notice two important
insights that can greatly simplify the subsequent analysis. First,
its subtrahend is constant with respect to Qu; hence it can be
dropped. Secondly, because DMA is used for reception in this
work, the weight Qu only affects the signal of user u, which
suggests that we can independently optimize the weights of
different users without impacting the overall system capac-
ity. Leveraging on the aforementioned insights, we proceed
by representing the following matrices in their EVD form,
i.e., Bu = UuΛ

1/2
u Λ1/2

u UH
u and σ2

uI +
K

i̸=u Γu,iΓ
H
u,i =

P uD
1/2
u D1/2

u PH
u . Next, we let Ωu = P uD

1/2
u and apply

the splitting technique on Q̄u such that 2Q̄u = Su + Eu,
where Su = jI , Eu = diag (q̄1, q̄2, · · · , q̄Nu

), q̄i = ejφi ,
φi = θ⌈ i

Lu
⌉,max(ϑi,Lu�ϑi=0), and ϑi = mod (i, Lu) [7]. These

decompositions help to transform (22) into the following
tractable form

f ′
2 (Eu)

= ωu

Λ1/2
u UH

u


I − 0.5Y u (Su +Eu)Γu,u


2

F

+ ωu

0.5Λ1/2
u UH

u Y u (Su +Eu)Ωu


2

F
, (25a)

= ωu ∥C2u − JuEuΓu,u∥2F + ωu ∥C3u + JuEuΩu∥2F ,
(25b)

where C2u = Λ1/2
u UH

u − JuSuΓu,u, C3u = JuSuΩu,
and Ju = 0.5Λ1/2

u UH
u Y u. To further simplify f ′

2 (Eu) we
convert the Forbenius norm in (25b) to Euclidean norm by let-

ting T 1u =

diag

�
[Γu,u]1


JT

u , · · · , diag

[Γu,u]Πu


JT

u

T
,

T 2u =

diag ([Ωu]1)J

T
u , · · · , diag

�
[Ωu]Nu


JT

u

T
, v2u =

vec (C2u), v3u = vec (C3u), and vectorizing Eu into qu ∈
CNu×1 such that [qu]n = [Eu]n,n. This procedure yields

f ′
2 (qu) = ωu ∥v2u − T 1uqu∥

2
+ωu ∥v3u + T 2uqu∥

2
, (26)

which finally transforms P(2-Qu) to

P(2-qu) : min
qu

f ′
2 (qu) (27a)

s.t. |[qu]n|
2
= 1, ∀n. (27b)

Because f ′
2 (qu) is continuous and differentiable over the

domain of qu, i.e.,

∂

∂qu

f ′
2 (qu) = 2ωu


TH

1uT 1u + TH
2uT 2u


qu

+ 2ωu


TH

2uv3u − TH
1uv2u


, (28)

problem P(2-qu) can then be solved by a variety of techniques
such as manifold optimization [7] or gradient projection [15].
The summary of the optimization of Qu is given in steps
8–15 of Algorithm 1. The algorithm starts with a random
initialization of Qu and F u, ∀u, based on its inputs, Gu,
Hu, transmit power, P , user priority, ωu, and user’s noise
variance, σ2

u. Finally, when it converges, it returns each user’s
transmit precoder and DMA weights.

IV. NUMERICAL RESULTS

To demonstrate the effectiveness of the proposed DMA-
based system, we present its WSR performance in this section.
We compare this performance with that of the conventional
MIMO (Conv. MIMO) system that has NB and Mu antennas
at the BS and each user, respectively, connected with their
dedicated RF chains. We also adopt a random weight scheme
denoted by “Rand. Qu” that randomly chooses the DMA
weight of each user to demarcate the low-bound performance.

1174



Algorithm 1: Proposed DMA scheme (Prop. DMA)

Input : Gu, P , Hu, ωu, and σ2
u, ∀u

1 Initialization: Randomly generate Qu according to (3)
and F u’s such that

∑K
u=1 Tr (Ku) ≤ P .

2 repeat
3 while

∑K
u=1 ωu log2 |W u| has not converged do

4 Update V u’s according to (15).
5 Update W u’s according to (16).
6 Update F u according to (18).
7 end
8 while (22) has not converged do
9 Update Au’s according to (23).

10 Update Bu’s according to (24).
11 for u = 1; u ≤ K; u = u+ 1 do
12 Solve P(2-qu) to obtain qu.
13 Q̄u = 0.5 (Su + diag (qu)).
14 end
15 end
16 until

∑K
u=1 ωuRu converges

Output: F u and Q̄u, ∀u

A. Simulation settings

We consider a system where K = 4 users, who are equipped
with DMA having M1 = 2, M2 = 4, M3 = 6, and M4 =
8 microstrips, respectively, receive a signal through a single-
cluster 20-ray mmWave channel [5], sent with a power P =
23 dBm from a Du = 1000 m distant BS. The microstrip
of each user, whose attenuation constant and wavenumber are
given by αi = 0.6 m−1 and βi = 827.67 m−1, respectively,
are equipped with Lu = 4 elements spaced at d = λ/2, with
λ being the wavelength of the 28 GHz carrier frequency. The
noise variance, priority, and the path loss of user u are given
by σ2

u = −80 dBm, ωu = ψu∑K
j=1 ψj

, and

PL (Du) [dB] = 35.6 + 22 log (Du) , (29)

respectively, where ψj = 100.1PL(Dj).

B. Performance analysis:

We start by presenting in Fig. 2 the WSR performance of
various schemes against the number of transmit antennas at the
BS. First, we observe that the performance of all the schemes
improves with the number of BS transmit antennas, mainly
due to the increased number of supported streams and array
gain. Interestingly, the Prop. DMA algorithm is observed to
attain the highest performance of all the compared schemes.
Quantitatively, we note that Conv. MIMO scheme needs twice
the number of RF chains to achieve the performance of Prop.
DMA algorithm. This remarkable performance of the DMA
system over Conv. MIMO system is due to two factors. First,
the capability of the DMA to pack a large number of elements
within its microstrip greatly elevates the array gain past that
of Conv. MIMO system. The second reason is obviously
the efficiency of the proposed DMA scheme in effectively

4 6 8 10 12 14 16 18 20

1

2

3

4

5

6

7

8

Fig. 2: WSR vs. NB for K = 4 and P = 23 dBm.
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Fig. 3: User WR of the Prop. DMA scheme for K = 4 and
P = 23 dBm.

materializing the aforementioned gain by properly optimizing
the transmit precoder and the DMA weights. This fact can
be supported by looking at the performance of the Rand. Qu

scheme. Specifically, despite using DMA, its performance is
lowest because the DMA weights are not properly tuned.

Next, in Fig. 3, we unpack the performance of the Prop.
DMA system by examining the individual weighted rate
(WR) of each user. As expected, the WR of user 1 is the
lowest because it has the fewest number of microstrip and
RF chains, whereas user 4 has the highest WR due to its
highest number of RF chains that can support many streams.
Moreover, observe that as the number of BS transmit antennas
increases, so does the performance of each user. This is due
to the improved array gain and increased number of streams
for users 2–4.

Finally, we provide in Fig. 4 the per-user WR comparison
between the conventional MIMO and the proposed DMA-
based systems when the BS is equipped with 20 antennas. Due
to the same reasons stated for Fig. 2, the WR performance
of the Prop. DMA algorithm is observed to be higher than
that of Conv. MIMO scheme for each user. Similarly, as
mentioned in the analysis of Fig. 3, the performance of user
4 for all the schemes is highest because of its highest number
of supported streams derived from its large number of RF
chains, i.e., M4 = 8, whereas the performance of user 1,
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Prop. DMA

Fig. 4: User WR comparison between Conv. MIMO and Prop.
DMA schemes for NB = 20 and P = 23 dBm.

which has only M1 = 2 RF chains, is the lowest. The
superlative performance of the proposed DMA-based system
and its proposed procedures for optimizing the DMA weights
and transmit precoders clearly demonstrate the feasibility of
using DMA to realize high-capacity wireless communication
systems.

V. CONCLUSION

This work studied the downlink MU-MIMO system, where
users are all equipped with DMA. Noting the continuous surge
in the demands for high-capacity links between different nodes
in the wireless networks, we focused on the downlink WSR
maximization. Specifically, we started with the layout of the
system model, followed by the formulation of the WSR maxi-
mization problem, and lastly, we proposed efficient techniques
for optimizing the transmit precoders and the DMA weights
of each user. The presented simulation results demonstrated
the remarkable performance gains of the proposed DMA-
based system and its proposed algorithm in attaining higher
performance with respect to the benchmark schemes.
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