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Abstract—Conventional RANs typically adopt a one-size-fits-all
approach, which limits their effectiveness in responding to the
varying conditions inherent in dynamic modern environments.
The rigid nature of these systems necessitates extensive manual
tuning and configuration, which is both time-consuming and
expensive. Therefore, there is an urgent need to develop an
innovative network that combines diverse networks, services,
and modern technology into a cohesive infrastructure. This
convergence is essential for providing multi-faceted cooperation,
cohesive functionality, and meeting contemporary applications
in dynamic environments. The Hydra radio access network (H-
RAN) has been conceptualized as a comprehensive platform.
This innovative design aims to integrate all existing networks
and services, establishing a cohesive environment where they can
operate concurrently. H-RAN seeks to break down silos by foster-
ing collaboration among diverse networks, facilitating seamless
interoperability. This paper introduces a novel paradigm of H-
RAN multi-faceted cooperation architecture that incorporates a
dense deployment of sensor and radio units (SRUs) that work
collaboratively to optimize user status decisions. In addition, we
introduce inter-element cooperation in a cooperative multi-sparse
input/multi-task learning-based federated learning paradigm,
known as (C-SMTL), which is an integral component of the
AI/ML D-engine allowing H-RAN components to align their
objectives toward common goals, thereby optimizing learning
outcomes. This collaborative focus paves the way for a more
robust and efficient machine learning (ML) framework. A key
highlight of the simulation findings is the approach’s ability
to increase classification accuracy by an impressive 95% while
maintaining reliability.

Index Terms—Hydra radio access network (H-RAN), Multi-
Functional networks, Perceptive networks, Heterogeneous data,
AI/ML engines, Accurate user status, and Cooperative multi-
sparse input/multi-task learning-based federated learning (C-
SMTL).
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I. INTRODUCTION
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Figure 1: H-RAN evolution represents a transformative shift in
network architecture, emphasizing the integration of multiple
networks and technologies to create a cohesive ecosystem
that supports diverse applications. This network is not only
technologically advanced, but it is also resilient and adaptable
to changing conditions. This holistic approach not only con-
solidates functionalities but also optimizes resource utilization
across the network.

With the continual emergence of evolving applications and
increased reliance on advanced technologies, 5G may not
be able to fully address future requirements and demands.
The inadequacy of 5G in certain contexts highlights the
necessity for networks that can dynamically respond to diverse
and rapidly changing conditions. Conventional radio access
networks (RANs) are characterized by predominantly mono-
lithic architectures that hinder their flexibility and scalabil-
ity, preventing effective adaptation to varying user demands
and rapid changes in environmental conditions. This rigidity
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Figure 2: H-RAN network topology: The disaggregated architecture of sensor and radio units (SRUs) and Hydra distributed
unit (H-DU) perceptual networks facilitates heterogeneous network deployment. Overlapping areas between SRUs can improve
the accuracy and reliability of information gathered about objects or events. Cooperation between multiple SRUs facilitates
effective monitoring and comprehensive data sharing in wireless networks. This collaboration enables the SRUs to combine
their resources and insights, enhancing the overall network’s observation capabilities and improving the accuracy of the data
collected.

compromises real-time modifications, which are critical in
the evolving landscape of contemporary applications. There-
fore, there is an urgent need for an innovative and cohesive
network integrating various networks, services, and modern
technologies. This is crucial for streamlined operations and
supporting the growth of interconnected applications in today’s
digital environment. A unified infrastructure plays a pivotal
role in facilitating interconnected applications’ growth. This
is essential in today’s digital landscape, where applications
require seamless communication and data exchange to operate
effectively across various platforms. Hydra radio access net-
works (H-RANs) are an innovative platform designed to meet
future network demands by establishing a unified, versatile,
and intelligent network. This evolution seeks to combine

communication networks, sensor networks, edge computing
(EC), the internet of things (IoT), distributed ledger (DL),
automated driving (AD), vehicle-to-everything (V2X), etc.,
enabling a cohesive operation that meets the diverse demands
of these technologies. This integration facilitates seamless
data sharing and collaboration across various applications,
ensuring that all components function harmoniously. H-RAN
symbolizes a network architecture capable of adapting dy-
namically and accommodating a wide range of services and
technologies. H-RAN’s framework is expected to be central
to the evolution of the communications and sensor ecosystem
in the upcoming multi-functional network era [1], [2]. This
architecture integrates extensive sensor data as well as AI/ML
workflows across a wide range of diverse functional compo-
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nents, emphasizing and extending the concept of functional
disaggregation for the next generation of sensory and radio ac-
cess networks (NG-SRANs) [1], [2]. Moreover, in the H-RAN
framework, the dense deployment of sensor and radio units
(SRUs) is essential for providing adequate coverage to meet
the growing demands of connected devices, reducing latency,
and increasing data throughput. This paper proposes a novel
H-RAN multi-faceted cooperation architecture that enables the
accurate gathering of user status information for centralized
control by Hydra distributed units (H-DU) [1], [2], including
location, direction, speed, classification, weather condition,
probability of blockage, communication parameters, etc. [1],
[2]. By analyzing combined observations from multiple SRUs,
H-RAN networks can provide a more detailed and precise rep-
resentation of the network environment, significantly reducing
the risk of errors associated with data reported by individual
SRUs. Moreover, H-RAN multi-faceted cooperation strategies
minimize the individual overhead experienced by individual
nodes, which reduces the burden on a single SRU by sharing
monitoring tasks and consolidating observations. In addition
to SRU cooperation, we introduce cooperative multi-sparse
input/multi-task learning-based federated learning (C-SMTL),
which is an integral component of the AI/ML D-engine [1],
[2]. This innovative approach fosters collaboration among vari-
ous components within H-RAN edge/cloud networks, enabling
the execution of diverse SMTL tasks according to real-time
input features. By pooling data through different network com-
ponents, computation sharing facilitates collaboration among
network components and enables the aggregation of model
updates and shared workloads [5]–[8]. The combination of
SRUs and SMTL cooperation forms the core of H-RAN
multi-faceted cooperation, which enables many complemen-
tary technologies. It is worth mentioning that accurate user
status extends beyond communication networks, affecting how
various modern technologies function. By bolstering system
accuracy and reliability, accurate status information becomes
a cornerstone of success in diverse applications across mul-
tiple industries. For the sake of brevity, this study focuses
exclusively on cooperation-based user status decisions, which
is a critical aspect for making informed decisions within the
various networks and services organized within the unified
RAN, including communication networks, sensor networks,
EC, the IoT, DL, AD, V2X, monitoring, security, etc.

II. H-RAN MODEL

As shown in Fig. 2, we consider an outdoor environment
with an H-RAN network [1], [2] that consists of multi-access
SRUs. SRUs can gather real-time information about users
and their surroundings using a variety of sensor technolo-
gies. In dense network environments, SRUs are designed to
function collaboratively. In such collaborative networks, mul-
tiple SRUs can communicate and share information regarding
network conditions and user status, where UEk, and K =
{1, 2, 3 . . . , n}. In the H-RAN architecture, data collected by
the SRUs is transmitted to the H-DU. Upon reaching the H-
DU, the data undergoes processing through multiple layers,
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Figure 3: The proposed C-SMTL architecture goes beyond
traditional global aggregation methods by fostering closer
collaboration among network components, enabling richer in-
teraction between various components. C-SMTL significantly
broadens cooperation among distributed nodes, facilitating
data and model sharing among participants. This shift allows
local nodes to work more effectively by leveraging insights
gained from other nodes within the network, thus promoting a
collective learning approach that is more robust to individual
data discrepancies and facilitating better overall performance.

including communications layers, sensor layers, and AI/ML
D-engine layers. Each layer has been designed to address
particular aspects of information. C-SMTL is a part of the
AI/ML D-engine which utilizes a cooperative paradigm that
emphasizes cooperation to unlock the potential of H-RAN
edge/cloud networks in the execution of distributed SMTL
tasks. Specifically, C-SMTL leverages open FH links for data
and model sharing with other C-SMTLs. This intelligent coop-
eration can improve ML model performance with a reduction
in energy consumption and latency.

Moreover, in a dense cooperative SRU network, the H-
DU assigns a unique index to each connected user equipment
(UE). This unique indexing enables the network to distinguish
between users irrespective of the overlapping SRUs in the
vicinity. For instance, as shown in Fig. 2, the network model
consists of four SRUs with at least two overlaps between each
SRU. SRUs are strategically placed to provide overlapping
coverage areas. This means that multiple SRUs can serve
the same user or region, offering redundancy and multiple
communication paths. In other words, SRUo possesses the
potential to cooperate to serve common UEs. According to
this definition, the network can be represented by an arbitrary
diagram H = ⟨SRUs, SRUo⟩ where SRUo ⊆ SRUs, where
SRUs represent the cluster of SRUs controlled by H-DU, and
SRUo is the overlapping SRUs group. In dense SRUs, a UE
can simultaneously reach multiple SRUs located in its vicinity.
However, for operational efficiency, it is assumed that a UE
can be associated with only one SRU at any given time. While
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the UE is connected to one primary SRU, the overlapping
SRUs continue to monitor and track the connected UE. This
monitoring capability provides valuable insights into the UE’s
status, location, and signal conditions, enabling the network
to assess and respond to changes in real-time. Consider that
the local posteriors formed at SRU nodes are represented as
the densities of labeled random finite sets {X1, . . . ,Xms

},
where ms denotes the number of sensors in each SRU. In
this framework, it is assumed that the labels corresponding
to identical objects in each labeled random finite set are
consistent across the network. Any potential label mismatch
issues are presumed to be effectively managed by H-DU’s
centralized architecture. Assume that the FoV of the sth sensor
by FoVs ∈ X, and its detection probability can be formulated
as

Pr(X
(ρ)
2 = ∅

∣∣∣X(ρ)
1 = ∅)

= 1−
∃(ρ)k|k−1

[
1− ⟨p(ρ)k|k−1, pD2⟩(FoV2\FoV1)

]

1− ∃(ρ)k|k−1⟨p
(ρ)
k|k−1, pD2

⟩(FoV2\FoV1)
,

(1)

where X represents a labeled random finite set of multi-object
states for which there can be more than one element with
the same label, ρ is target label parameters, ∃(ρ) indicates
the probability that the target exists by the label (ρ), ∃(ρ)k|k−1

denotes the probability of existence at the time k|k − 1|, p(ρ)
denotes the single-object density conditional on its existence,
pD2

represents the detection probability of each target within
the field of view of the sth sensor FoVs ∈ X. If the two fields
of view are completely separate, then FoV2 ∩ FoV1 = ∅.
Thus, FoV2\FoV1 = FoV2. Thus, the probability of existence
of target (ρ) at SRU2 s = 2 can be formulated as

P (∃) =
∃(ρ)k|k−1[1− ⟨p(ρ)k|k−1, pD2

⟩(FoV2\FoV1)]

1− ∃(ρ)k|k−1⟨p
(ρ)
k|k−1, pD2

⟩(FoV2\FoV1)
, (2)

As depicted in Fig. 2, in scenarios where certain SRUs
face constraints such as blockage from specific angles or
limited sensing range, cooperative sensing allows the system
to compensate for these limitations. This is achieved by
leveraging data from overlapping field of view (FoV) SRUs
with complementary capabilities, capturing information from
diverse perspectives, and expanding coverage areas.

As shown in Fig. 3, the Hydra central unit (H-CU) is re-
sponsible for overseeing higher layers of the protocol stack and
ensuring coherent communication between the core network
and the SRUs through direct interaction with the H-DUs. This
management role includes guiding data management tasks,
making strategic decisions, and optimizing network resource
allocation [1].

A. Cooperation Among SRUs

In a dense deployment of SRUs, cooperation among over-
lapping and nonoverlapping SRUs is structured to enable

effective data-sharing channels, where selected insights can
be communicated to the H-DU. This targeted sharing en-
sures that only pertinent data is relayed, thereby optimizing
decision-making processes while minimizing bandwidth us-
age. Through these shared data streams, the central H-DU can
make informed decisions based on a comprehensive view of
the network’s conditions. By collectively pooling their obser-
vations, the SRUs can provide a higher-quality dataset to the
H-DU for processing, leading to more accurate modeling and
analysis of the network environment. Strategic placement of
SRUs in overlapping coverage areas is critical to their design
and deployment. This arrangement allows multiple SRUs to
serve the same user or geographical region, thus creating
redundancy in data collection. This redundancy ensures that
even if one SRU fails or experiences interference, other SRUs
can maintain service continuity and provide alternative data
sources. Cooperative data sharing enabled by overlapping
SRUs is also advantageous for optimizing H-DU decision-
making processes. The aggregation of diverse observations
from SRUs allows for a more comprehensive understanding
of the network environment [7], [8].

B. Cooperative Multi-Sparse Input/Multi-Task Learning-
Based Federated Learning (C-SMTL)

Indeed, conventional networks struggle to adapt to rapid and
frequent changes in network environments due to their inherent
limitations. They often rely on (a one-size-fits-all solution),
which is static solutions and lacks the sophisticated perceptive
capabilities provided by modern technologies, such as AI and
sensors. This results in a rigid approach that cannot effectively
address the nuanced and dynamic nature of current networking
demands. The absence of adaptive capabilities limits their
ability to adjust in real time, thus compromising their overall
performance. The H-RAN is set to revolutionize conventional
networks by comprehensively incorporating AI technologies
across all network components. This evolution enables H-RAN
to deliver a broad and adaptive range of solutions (tasks),
facilitating real-time adjustments based on changing network
conditions. This flexibility allows the network to dynamically
modify its operational approach, switching between different
tasks as network conditions evolve [1], [2]. The SMTL is
designed to select, implement, and switch between a multi-
task, each task is tailored to a specific network condition.
Each selected task represents the optimal solution from a
list of recommended solutions, namely ”Tasks”, according to
input online sensing data input and communication parameters.
SMTL offers the ability to switch between different tasks
seamlessly, depending on fluctuations in network conditions.
This adaptability is vital as it ensures that the network can
instantaneously respond to changes.

In this study, the SMTL model [2] is implemented for
cooperative federated learning. This technology enables effi-
cient and scalable learning across multiple tasks in distributed
environments, making it well-suited to applications where data
is distributed across the edge, IoT, mobile devices, and the
cloud. SMTL is inherently designed to address scalability
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challenges when dealing with multiple tasks simultaneously.
This model ensures that diverse tasks can be managed con-
currently without significant increases in resource demand
[2]. It is particularly advantageous for applications involving
fragmented data across different nodes. In these scenarios, fed-
erated learning avoids the pitfalls of centralized data gathering,
which introduces latency. As part of this approach, cooperative
federated learning is incorporated into SMTL to facilitate local
training on each component of the model while still permitting
collaborative improvements to the global model. Moreover,
the C-SMTL framework addresses the severe heterogeneity
challenges typically faced in distributed data environments,
allowing for more context-aware models that remain aligned
with varying data distributions across different tasks. The C-
SMTL paradigm is designed to significantly expand cooper-
ation dimensions and improve collaboration among partici-
pating entities, enabling them to learn efficiently from their
distinct datasets while sharing valuable insights across the
network. These mechanisms include data sharing, compu-
tation sharing, model sharing, and decision-making sharing
[5], [6]. The C-SMTL paradigm utilizes links and opens FH
interferences among H-RAN networks, devices, servers, and
infrastructure. Enhances connectivity and interaction among
various components within edge and cloud networks. This
interconnectedness enables seamless data flow and model
sharing between distributed units, fostering collaboration es-
sential for optimizing ML outcomes. Although the C-SMTL
paradigm enables many synergistic technologies, only a few
are investigated in this study for brevity. As illustrated in Fig.
3, we investigate multi-SRU cooperation due to its substantial
influence on improving user status accuracy by providing
diverse and alternative sources of information for H-RAN
networks.

III. SIMULATION AND RESULTS

In this section, simulations are performed to evaluate the
performance of the proposed model using different simulation
methods, including the ViWi dataset [9], the InSite ray-tracing
software [10], OpenAI Gym [11], and the Python program-
ming platform. We simulate an H-RAN scenario where a dense
heterogeneous network composed of four SRUs is evenly
distributed, and different user densities are deployed randomly.
All SRUs are located within H-DU’s control area and each
SRU is equipped with sensors and communication units. We
consider an H-RAN architecture [1], [2] for multi-access
cellular networks of SRUs. This network is comprised of a
serving SRU and at least two coverage-overlapping SRUs.
The SRU is located at a distance of d[n] from the UE
and they are scattered randomly within the coverage area.
For coverage overlap, the cell radius is set to r > D/2
and SRUs coordinate their interference and power efforts
through centralized control mechanisms of H-DU [1], [2]. The
duration of periodic feedback ti reported by SRUi, includes
the UEj information e.g., position Xj(xj , yj), and the distance
between SRUi and UEj Dj(dj,x, dj,y). The distribution of
obstructions within the cell is modeled as a Poisson point

process. By applying queueing theory, we derive blockage
probability analytically. Afterward, interference statistics are
derived using the blockage model, which incorporates spatial
randomness in the location of blockages and UEs. Next,
according to interference statistics, we define and derive the
coverage probability of a UE. According to UE coverage, we
calculate the probability of a UE’s preamble being transmitted
successfully. The C-SMTL model is implemented to broaden
cooperation dimensions and improve collaboration within par-
ticipating entities, permitting them to learn from their distinct
datasets and share valuable insights across the network. In
the evaluation of cooperative performance within a C-SMTL
framework, ensemble classification accuracy serves as the
key performance metric. This accuracy measurement evaluates
how well the model performs across various tasks and datasets
in a collaborative setting. The experimental setup utilizes
OpenAI Gym [11]as the environment template, integrating it
with Python TensorFlow for model training and evaluation.
OpenAI Gym offers a flexible framework for creating and
testing reinforcement learning algorithms, making it suitable
for SMTL tasks where performance incentives can be mod-
eled as rewards. TensorFlow provides the necessary tools to
implement complex neural network architectures required for
efficient learning. We evaluate the sum of the most recent 20
iterations from M = 200 iterations to determine the converged
reward. In each iteration of the proposed algorithm, the SRU
aims to establish an association with the UE that exhibits the
most favorable channel conditions. This decision is influenced
by various parameters, including channel reliability, UE per-
ception via SRU, location, proximity of the UE to the SRU,
etc. By prioritizing superb channel conditions and minimizing
distances, UEs are better positioned to receive superior service.
If an SRU cannot fulfill a user’s request due to limitations
such as blockage or interference, the algorithm forwards
the request to another overlapping SRU. This redundancy in
service availability enables continuous adaptability.

In the simulation, we assumed the probability of a blockage
occurring only on one side between the primary associated
station and the end user, which can be referred to as the line-
of-side (LoS). Inherent blockage characteristics can explain the
inverse relationship between user status classification accuracy
and blockage probability. As blockage probability increases,
the ability of the primary associated station to perceive user
status is compromised, causing the associated station to strug-
gle to effectively perceive user status, leading to low accuracy.
The absence of a secondary station exacerbates the issue as the
main station relies solely on its line of sight to the UE. There-
fore, without an alternative station, this ability to perceive
diminishes directly as blocking conditions worsen. Meanwhile,
the proposed approach outperforms conventional methods by
showing a stable accuracy rate of approximately 95% despite
an increase in blocking probabilities. In the simulation setting,
the user is assumed to be static while obstacles interact
dynamically. The observed stability in classification accuracy
can be attributed to three key factors: the dense deployment
of SRUs, the overlapping coverage areas of these units, and
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their cooperative functionality. The overlap coverage between
SRUs further enhances classification reliability. This overlap
ensures that if one SRU experiences a service blockage, other
overlapping SRUs can still provide consistent user information
and maintain service continuity. Cooperation among SRUs
allows overlapping SRUs to share information and resources,
ensuring that there is a backup in the event of a disconnection
between the primary SRU and the user.

The reason for this is that when the primary associated
station encounters a blockage at a specific angle, the alternative
SRU can maintain perception by exploiting a different angle
of view. Such a mechanism ensures that the system can
continue operating despite localized disturbances, providing a
more stable connection and reducing outages. By employing
intelligent routing and coordination among multiple stations,
the network can dynamically adjust to changing environmental
conditions, preserving service quality for users.
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Figure 4: The classification accuracy of user status as a
function of the probability of blockage.

IV. CONCLUSIONS

As emerging technologies evolve rapidly, traditional net-
works dedicated to specific applications or services are becom-
ing increasingly insufficient. As these technologies advance,
their demands on network infrastructures grow, highlighting
the need for a more versatile and comprehensive network. In
addition, to meet the escalating demand for wireless services,
dense heterogeneous and cooperative networks are positioned
as pivotal technologies for advancing networks. Sensor data
within SRUs undergoes preprocessing to construct a compre-
hensive state representation that encapsulates current network
conditions. Each SRU in the H-RAN architecture possesses
its own FoV, delineating the spatial area for detection and
communication with other devices. Moreover, the SRUs and
C-SMTL paradigm strategically aim at broadening coopera-
tion dimensions among entities. This framework encourages
inter-element collaboration through selective data sharing and
collective model training that maximizes the utility of shared

insights without compromising each dataset’s individuality. By
utilizing the cooperation framework, entities can gain a holistic
understanding of their operational environment. This compre-
hensive perspective fosters interconnectedness and adaptabil-
ity, which are critical for navigating modern applications. User
status accuracy extends beyond the realm of communication
networks, influencing various technologies such as automated
systems, monitoring platforms, IoT devices, etc. Since H-RAN
is engineered to consolidate various networks and applica-
tions into a unified framework, accurate status information
will enable systems to respond effectively to real-time data.
For example, in automated vehicles, accurate user status
can contribute to safety and decision-making quality, vital
for preventing accidents and ensuring smooth operation. Our
simulation results validate the effectiveness of the proposed
approach in achieving a remarkable classification accuracy of
95% and ensuring consistent reliability.
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