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Abstract—.This paper investigates the application of
DenseNet121, a deep learning model, for automated fault
detection in solar panels using Kangwon National University's
Samcheok Campus as a case study. As solar energy plays a
crucial role in sustainability efforts, ensuring the efficiency of
solar panels is paramount. Traditional methods of fault
detection are labor-intensive and prone to errors, necessitating
more effective solutions. DenseNet121, leveraging its dense
connectivity for feature learning from solar panel images, is
explored in this study. Through rigorous training and
validation, DenseNet121 demonstrates high accuracy in
identifying faults such as cracks, hotspots, and delamination.
This research advances automated fault detection systems to
optimize energy production and ensure long-term operational
efficiency in solar installations. Future research directions
include further optimizing DenseNet121, expanding datasets,
and integrating real-time monitoring for enhanced reliability
and cost-effectiveness. These advancements hold promise for
transforming renewable energy technologies globally.

Keywords—DenseNet121, Deep learning, Fault detection,
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I. INTRODUCTION

Solar energy has become increasingly vital in global
efforts towards sustainability and renewable energy sources,
aiming to address challenges such as climate change and
energy security [1,2,3]. Solar panels are widely deployed
across residential, commercial, and industrial sectors as the
primary technology for harnessing solar energy. Ensuring
the efficiency and reliability of these panels is crucial for
maximizing energy output and ensuring economic viability
throughout their operational lifespan [4,5]. Despite
advancements in solar technology, maintaining optimal
performance remains challenging due to factors like
environmental conditions, manufacturing defects, and aging.
These factors contribute to various faults in solar panels,
including cracks, hotspots, shading, and delamination [6,7].
Detecting and diagnosing these faults promptly is essential
to prevent energy loss and mitigate operational risks.
Traditional methods of fault detection often rely on manual
inspections and periodic maintenance routines, which can be
time-consuming, labor-intensive, and prone to human error.
Recently, the integration of artificial intelligence (AI) and
deep learning has transformed fault detection processes by
enabling automated, accurate, and efficient analysis of solar
panel images [8,9]. This paper focuses on the application of
deep learning techniques, specifically DenseNet121, for
visually diagnosing faults in solar panels. DenseNet121 is a
convolutional neural network (CNN) renowned for its dense
connectivity pattern, enhancing feature propagation and

enabling effective learning of intricate image patterns.
Leveraging DenseNet121, this research aims to develop a
robust model capable of accurately identifying and
classifying various types of faults in solar panels. The
primary objective of this study is to investigate the
effectiveness of DenseNet121 in detecting common faults
such as cracks, hotspots, and delamination in solar panels.
Key research questions include optimizing and training
DenseNet121 for high fault detection accuracy, evaluating
its advantages over other CNN architectures for this
application, and addressing the limitations and challenges in
real-world scenarios. The structure of this paper is organized
to address these questions comprehensively. It provides
background on fault detection in solar panels, discusses
traditional methods, and reviews recent advancements in
deep learning for visual diagnostics. It delves into
DenseNet121's architecture and principles, explaining its
dense connectivity and transfer learning approach to adapt
pre-trained weights for fault detection. Additionally, it
describes the dataset used, detailing composition,
acquisition, annotation processes, and preprocessing steps to
ensure model robustness. In this study, the results will
include detailed metrics and visual representations crucial
for assessing how effectively DenseNet121 detects faults in
solar panels. These results encompass specifics about the
training dataset, validation accuracy, loss, and accuracy
metrics. They also feature graphical representations such as
accuracy and loss graphs during training and validation.
Additionally, the predictions made by the model will be
presented to demonstrate its performance in real-world
applications. The training dataset used in this research
consists of carefully curated images of solar panels, each
annotated to indicate different types of faults like cracks,
hotspots, shading, and delamination. These annotations
enable supervised learning, allowing DenseNet121 to learn
and classify these faults accurately. During training,
DenseNet121 adjusts its parameters iteratively based on the
training dataset to minimize the loss function and enhance
its accuracy in fault classification. Validation on a separate
dataset assesses how well the model generalizes to unseen
data. Validation accuracy, expressed as a percentage,
indicates the model's precision in predicting fault types,
while validation loss quantifies the disparity between
predicted and actual values during validation. Graphs
depicting training and validation accuracy track how the
model's accuracy improves over epochs, revealing trends in
convergence and potential overfitting. Similarly, training
and validation loss graphs illustrate decreasing loss values,
indicating improved model performance in identifying
faults. Prediction results demonstrate the practical
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application of the trained DenseNet121 model. These results
showcase images of solar panels with visible faults
alongside the model's predictions, highlighting its ability to
accurately detect and classify faults in real-world scenarios.
Overall, these detailed results—covering training data
specifics, validation metrics, graphical representations, and
prediction outcomes—serve to evaluate DenseNet121's
effectiveness in enhancing fault detection in solar
panels.This research provides valuable insights into the
model's performance, its potential applications in renewable
energy systems, and directions for future research in
AI-driven diagnostics for sustainable energy solutions and
to support the current research at Kangwon National
University Samcheok Campus research [10,11,12,13].

II. RELATED WORK

A. Existing Methods for Fault Detection in Solar Panels
Detecting and diagnosing faults in solar panels is critical

for maintaining efficiency, prolonging lifespan, and
optimizing energy output. Traditional methods like visual
inspection and electrical performance monitoring have
limitations in scalability, accuracy, and real-time monitoring
[14,15,16]. Recently, deep learning, particularly
convolutional neural networks (CNNs), has transformed
fault detection by automating the analysis of visual data
with high accuracy and efficiency.CNNs are specialized
neural networks for processing visual data [17,18]. They
consist of layers that extract features from images, pool
them to reduce dimensions, and classify them based on
extracted features. CNNs excel in learning hierarchical
representations, making them ideal for tasks such as image
classification and fault detection in solar panels [19,20,21].
Deep learning methods (Table I) are pivotal in automating

fault detection in solar panels, leveraging their ability to
analyze visual data with high accuracy. Below are five
distinct deep learning architectures commonly applied in
this domain, each offering unique advantages and challenges
[22,23,24]:

TABLE I. DEEP LEARNING METHODS FOR FAULT DETECTION IN SOLAR PANELS

No Deep
Learning
Method

Description

1 DenseNet121 DenseNet121 employs dense connections between
layers, facilitating efficient feature reuse and
gradient flow. It excels in identifying intricate
patterns in solar panel images.

2 ResNet ResNet introduces skip connections to mitigate the
vanishing gradient problem, enabling the training of
very deep networks crucial for complex feature
extraction tasks.

3 Inception Inception networks utilize parallel convolutional
modules with various filter sizes to enhance feature
extraction across multiple scales, optimizing
computational efficiency.

4 VGG (Visual
Geometry
Group).

VGG networks are renowned for their uniform
architecture comprising multiple layers with small
filters and max-pooling, effective in robust feature
extraction from images.

5 LSTM (Long
Short-Term
Memory)

LSTM networks, part of the RNN family, specialize
in capturing long-term dependencies in sequential
data, making them suitable for time-series analysis
in fault detection.

DenseNet121 is a specific CNN known for dense
connectivity. Unlike traditional CNNs where each layer
feeds into the next, DenseNet introduces dense blocks where
each layer connects with all preceding layers. This enhances
feature reuse, gradient flow, and efficiency. In
DenseNet121, every layer directly receives and passes
feature maps, promoting better information flow.
DenseNet121 is well-suited for fault detection in solar
panels due to its ability to capture fine details and complex
patterns from images. It involves training the model on
labeled datasets of solar panel images with annotated faults.
During training, DenseNet121 learns to recognize and
classify faults based on patterns extracted from images.
Training DenseNet121 requires large labeled datasets
representing diverse fault types under varying conditions
[25,26,27].

B. Traditional Technique
Traditional methods for identifying faults in solar panels

(Table II) have been fundamental in the industry, utilizing
approaches such as visual inspection, electrical performance
monitoring, infrared thermography, and IV curve tracing.
Each method offers distinct benefits but also faces inherent
limitations that hinder their effectiveness in meeting the
evolving demands of modern solar energy systems.
Electrical performance monitoring assesses solar panel
health by analyzing parameters such as voltage, current, and
power output. Deviations from expected values can indicate
faults such as shading, module mismatch, or wiring issues.
While this method provides quantitative data on
performance metrics, it cannot pinpoint the root causes of
faults or detect non-electrical defects impacting panel
integrity [28,29,30,31]. Moreover, its periodic measurement
approach may miss transient faults affecting real-time
energy production [32,33,34].

TABLE II. TRADITIONAL METHODS FOR IDENTIFYING FAULTS IN SOLAR PANELS

No Traditional
Technique

Description

1 Visual
Inspection

Involves physical examination for visible defects like
cracks or discoloration. Relies on inspector expertise
and environmental conditions. Suitable for initial
assessments but may miss hidden or internal faults.

2 Electrical
Performance
Monitoring

Analyzes electrical parameters (voltage, current,
power output) to detect deviations indicating faults
like shading or module mismatch. Provides
quantitative data but lacks insight into physical
defects.

3 Infrared
Thermography

Measures panel surface temperatures to detect
anomalies like cracks or hotspots. Effectiveness is
influenced by environmental conditions and
primarily detects surface-level faults.

4 IV Curve
Tracing

VGG networks are renowned for their uniform
architecture comprising multiple layers with small
filters and max-pooling, effective in robust feature
extraction from images.

5 LSTM (Long
Short-Term
Memory)

Conducts controlled IV tests to assess parameters
(MPP, fill factor) and diagnose faults such as shading
or degradation. Requires specialized equipment and
controlled environments.

Traditional fault detection methods in solar panels have
been foundational but face challenges in scalability,
reliability, and the ability to detect concealed or internal
faults. These techniques are often labor-intensive, rely on
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subjective assessments, and may not provide comprehensive
insights into panel health.

C. Deep Learning and Visual Diagnostics
Deep learning has transformed various industries by

offering powerful solutions for complex tasks such as image
recognition, natural language processing, and medical
diagnostics. In the realm of renewable energy, particularly
solar power, deep learning techniques are increasingly
utilized to improve the accuracy and efficiency of detecting
faults in solar panels. This section explores how deep
learning, combined with visual diagnostics, is
revolutionizing the identification and analysis of solar panel
defects [35,36,37,38]. Deep learning models, especially
convolutional neural networks (CNNs), excel in processing
and interpreting visual data. In solar panel maintenance,
these models can be trained to automatically identify and
classify subtle anomalies in images captured by monitoring
devices like cameras or drones. This capability surpasses
traditional methods, which rely heavily on manual
inspection and basic image processing techniques. By
automating fault detection, deep learning enhances
reliability, reduces human error, and streamlines
maintenance processes, ultimately optimizing the
operational efficiency of solar installations. Deep learning
techniques (Table III) are applied across various aspects of
solar panel monitoring and maintenance
[39,40,41,42,43,44]:

1. Image Classification and Object Detection:
Through extensive training on labeled datasets,
deep learning models can classify different types of
panel defects such as cracks, discoloration, or
soiling.

2. Semantic Segmentation: This method divides
images into meaningful segments, allowing
detailed analysis of panel surfaces at a pixel level.

3. Anomaly Detection: Deep learning algorithms are
adept at detecting abnormal patterns in thermal
images or electrical output data.

4. Predictive Maintenance: Leveraging historical data
and machine learning algorithms, predictive
maintenance models forecast future faults or
degradation trends in solar panels.

TABLE III. APPLICATIONS OF DEEP LEARNING IN SOLAR PANEL FAULT
DETECTION

No Application Description

1 Image
Classification

Identifies and categorizes panel defects such as cracks,
discoloration, or soiling based on visual data.

2 Object
Detection

Locates and identifies specific faults within images,
enabling targeted maintenance and repairs.

3 Semantic
Segmentation

Divides images into meaningful segments for detailed
analysis of panel surfaces, identifying areas affected by
shading or degradation.

4 Anomaly
Detectiong

Detects abnormal patterns in thermal or electrical data
to flag potential faults like overheating or reduced
energy output.

5 Predictive
Maintenance

Uses historical data to predict future faults or
degradation trends, optimizing maintenance schedules
and enhancing system reliability.

III. METHODOLOGY

A. Research Approach
The research methodology involves seven key

components (Figure 1), starting with problem formulation,
which defines the objectives and research challenges,
highlighting the need for efficient defect detection in solar
panels on university campuses. The next phase, the
literature review, entails a thorough analysis of existing
works to establish a theoretical framework and identify
relevant research on AI applications in solar panel fault
detection. The Data Collection stage focuses on obtaining
appropriate datasets of faulty solar panel images in
educational settings, which are then preprocessed to ensure
suitability for training the DenseNet121 model. This
involves cleaning, preprocessing, and augmentation of the
data. In the model development phase, DenseNet121 is
chosen as the AI model for defect detection, and it is
tailored and optimized for this specific purpose. The trained
model then undergoes rigorous training and evaluation to
assess its performance using relevant metrics. The final
stages, Analysis and Interpretation, involve evaluating the
model's effectiveness, limitations, and potential applications
in detecting solar panel failures on university campuses, as
well as interpreting the findings. This systematic approach
ensures a thorough investigation, providing valuable
insights into sustainable energy management practices in
educational institutions.

Fig. 1. Research Approach Graph

B. Kangwon National University Samcheok Campus
A case study conducted at Kangwon National University's

Samcheok Campus illustrates the implementation of fault
detection methods in solar panel technology. The initial
phase of the study involves identifying effective defect
detection techniques necessary to ensure optimal efficiency
and reliability of the campus solar energy system. Images of
solar panels across the Samcheok Campus are captured and
supplemented with internet-sourced images to compile a
dataset, accompanied by labels indicating the presence or
absence of defects. These images undergo preprocessing
procedures aimed at enhancing data consistency and quality.

Fig. 2. Kangwon National University Samcheok Campus
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A case study conducted at Kangwon National University's
Samcheok Campus illustrates the implementation of fault
detection methods in solar panel technology. The initial
phase of the study involves identifying effective defect
detection techniques necessary to ensure optimal efficiency
and reliability of the campus solar e
The study focuses on several buildings (Figure 2)

equipped with solar panels, namely:
• Engineering Building II (Building 122)
• Engineering Building IV (Building 118)
• Joint Laboratory and Practice Building (Building 123)
• Engineering Building V (Building 120)

IV. IMPLEMENTATION

A. Training Data
Accumulation of debris such as snow, dust, and bird

droppings on solar panels reduces their efficiency by
hindering their ability to convert sunlight into energy.
Regular monitoring and cleaning are essential to maintain
optimal efficiency, maximize resource utilization, reduce
maintenance costs, and enhance module performance.
Effective maintenance practices enable solar panel owners
to optimize energy production, extend panel lifespan, and
support sustainability efforts. This study explores the
detection accuracy of various machine-learning classifiers
for identifying dust, snow, bird droppings, and physical and
electrical damage on solar panel surfaces. The dataset
includes six class folders—dirt, debris, snow, bird
droppings, mechanical damage, and electrical
damage—compiled from internet sources, leading to a slight
imbalance in the number of images. Ensuring the dataset's
integrity and quality involves several steps in the data
verification process (Figure 3), including cleaning,
normalization, and feature engineering during
preprocessing. It is crucial to review the preprocessed data
meticulously to identify any anomalies or inconsistencies
that could affect model performance. Visualizing the data
helps detect patterns or outliers that require attention.
Addressing potential biases involves examining class
imbalances, where some classes may be overrepresented.
The dataset is then divided into training and validation sets
to evaluate the model's performance on unseen data, using
cross-validation techniques to ensure robustness and
generalizability.

Fig. 3. Training Data

Continuously monitoring and updating the model with
new training data as it becomes available is vital to
maintaining its accuracy and relevance over time. By
rigorously scrutinizing the training data and refining the

model accordingly, machine learning practitioners can
develop more precise and dependable models for various
applications, including the detection of faults in solar
panels.

B. Optimizer
To minimize the loss function and improve the

performance of the machine learning model, the
optimization process involves adjusting the model's
parameters. During training, several critical metrics are
monitored, such as training data accuracy and loss, as well
as training and validation accuracy and loss (Figure 4). The
graph illustrating training and validation accuracy over 14
epochs shows a steady improvement in both metrics,
indicating effective learning and refinement of the model
during training. Initially, training accuracy begins at 0 and
steadily increases to 0.8 by the 14th epoch, demonstrating
the model's increasing ability to correctly identify patterns
in the training data. Similarly, validation accuracy starts at
0.34 and follows a consistent upward trend, reaching 0.8 by
the 14th epoch. This progression suggests that the model not
only performs well on the training data but also generalizes
effectively to unseen data.

Fig. 4. Training and Validation Accuracy

The graph depicting training and validation loss reveals
the optimization process of the model over the 14 epochs.
Initially, training loss starts high at 3.0, indicating
significant divergence between predicted and actual values.
However, as training progresses, the loss steadily decreases
to 0.5 by the 14th epoch, indicating improved accuracy and
alignment with the actual data. Similarly, validation loss
begins at 1.7 and decreases consistently to 0.7 by the 14th
epoch, mirroring the improvements seen in training loss
(Figure 5). This reduction in loss values indicates effective
model optimization and a robust learning process.

Fig. 5. Training and Validation Loss

The trends observed in accuracy and loss metrics affirm
the effectiveness of the optimization process. The
continuous improvement in both training and validation
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accuracy, coupled with decreasing training and validation
loss, demonstrates the model's capability to learn from the
data without overfitting. The optimizer successfully adjusts
the model's parameters to minimize errors, resulting in
accurate predictions and generalizable performance. The
final accuracies of 0.8 for both training and validation
indicate high predictive capability, while low loss values
reflect the model's accuracy in predicting outcomes close to
the actual values. These results underscore the model's
proficiency in understanding underlying data patterns,
showcasing its potential for practical applications where
precise predictions are essential.

C. Prediction
The prediction outcome indicates that all six samples

were correctly classified, reflecting a perfect prediction rate
for the evaluated batch. Each prediction step took
approximately 2 seconds and 91 milliseconds, showcasing
the model's efficiency in processing data. The loss value of
0.5537 indicates a minimal discrepancy between predicted
and actual outcomes, demonstrating the model's accuracy in
making predictions. With an overall accuracy of 86.44%,
the model successfully classified the samples, affirming its
capability to generalize from the training data (Figure 6).
The validation accuracy of 0.86 further validates the model's
performance on new data, emphasizing its reliability in
real-world applications, such as fault detection in solar
panels.

Fig. 6. Loss and Accuracy Result

These results suggest that although the model performed
reasonably well, there remains room for improvement
(Figure 7). Researchers may discuss factors such as dataset
size, class distribution, and model complexity, all of which
influence accuracy and loss values. To further elucidate the
model's performance, they might also present visualizations
of misclassifications and predictions. Additionally, to
contextualize their findings, scientists may compare their
results with those achieved by other models or approaches.
In summary, this section offers a comprehensive assessment
of the model's predictive capabilities, highlighting both its
strengths and weaknesses.

Fig. 7. Prediction Result

V. CONCLUSION

This study has examined the use of DenseNet121, a
robust deep learning model, for detecting faults in solar
panels. Through rigorous training and validation procedures,
the model has demonstrated significant efficacy in
accurately identifying various types of issues such as cracks,
hotspots, and delamination. The outcomes, characterized by
high accuracy rates and minimal loss values, highlight the
model's strength and its capacity to generalize effectively to
new, unseen data.
By employing DenseNet121, this research contributes to

the advancement of automated fault detection systems in
solar panel technology, essential for optimizing energy
production and ensuring sustained operational efficiency.
The findings underscore the potential of deep learning
methodologies in enhancing sustainability initiatives by
improving the reliability and maintenance protocols of solar
energy systems. Looking ahead, future research could focus
on further optimizing DenseNet121, exploring larger and
more diverse datasets, and refining the model's ability to
detect subtle and complex faults. Additionally, integrating
real-time monitoring capabilities could enhance practical
applications of this technology in the field. Ultimately,
ongoing developments in deep learning methodologies hold
promise for driving innovations in renewable energy
technologies, facilitating more efficient and sustainable
energy solutions on a global scale.
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