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Abstract—The increasing aging population necessitates intelli-
gent monitoring systems that can accurately detect and classify
daily activities, enabling proactive healthcare interventions and
promoting independent living for the elderly. To this end, this
study presents ADL recognition system for elderly care, leverag-
ing advanced 3D CNNs with skip connections and self-attention
mechanism. Our proposed model processes RGB video data
from the ETRI-Activity3D dataset. The architecture incorporates
skip connections to mitigate the vanishing gradient problem and
a self-attention mechanism to capture complex spatio-temporal
features. Experimental results demonstrate the superiority of our
approach, achieving 99.0% accuracy on the training set and
96.1% on the validation set. Notably, our model outperforms
the baseline ETRI(FSA-CNN) implementation by 6%. The study
provides both quantitative and qualitative evaluations, including
accuracy metrics, loss curves, and visual representations of
classification outcomes. These thorough results highlight the
robustness and effectiveness of our proposed system in real-world
scenarios. This research contributes to the evolving landscape
of technology-assisted elderly care, offering a foundation for
future developments in anomaly detection, risk management, and
personalized alert systems. The proposed ADL recognition system
has the potential to greatly improve the quality of life for elderly
individuals and streamline healthcare resource allocation.

Index Terms—Activity of Daily Living (ADL), action recog-
nition, Convolutional neural network, healthcare, self-attention,
spatio-temporal features.

I. INTRODUCTION

The older adult population is continuously increasing
around the world [1]. This phenomenon of global aging poses
certain challenges including physical health deterioration, cog-
nition decline, mental health issues and preference for aging
in place with freedom, safety and independence [3], [4]. The
activities of daily living (ADLs) [2] , is a term used in health-
care industry to refer to essential and routine activities that
most people should be able to perform without any assistance
[5] indicating their well-being [6]. ADL’s monitoring allows
caregivers for timely assistance provision at the time of need
[7].
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The development of smart homes [8], [9], [10] and smart
cities offers a promising framework for implementing ADL
recognition technologies. Smart homes, equipped with a range
of sensors, IoT devices, and intelligent algorithms, can provide
continuous, real-time monitoring of an individual’s activities.
In the context of healthcare, smart homes have the potential
to transform how care is provided to the elderly by facilitating
proactive and preventive care models. Through continuous
monitoring, smart homes can detect deviations from normal
activity patterns that may indicate the onset of health issues
or the occurrence of accidents like falls. These early warn-
ings can prompt timely interventions, potentially preventing
hospitalizations and reducing the overall healthcare burden.

RGB video-based ADL recognition offers several advan-
tages, including the ability to monitor activities [10] without
requiring the individual to wear any devices or significantly
alter their living environment. These systems utilize video
cameras strategically placed within the home to capture daily
activities [11], which are then analyzed using advanced com-
puter vision techniques to recognize specific ADLs. The non-
intrusive nature of RGB video monitoring [12] is particularly
appealing in the context of elderly care, as it minimizes
disruptions to the individual’s routine and preserves their sense
of privacy and dignity.

Fig. 1. Sample frames of various ADL classes from the ETRI-Activity3D
dataset, showcasing a diverse range of activities captured under varying
environmental conditions.

3D CNNs [13] play key role in capturing spatio-temporal
features from RGB videos for improved ADL recognition
accuracy. Unlike traditional 2D CNNs [14] that focus solely on
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spatial features within individual frames, 3D CNNs extend this
capability by processing sequences of frames simultaneously,
capturing both spatial and temporal information. This ability to
learn spatio-temporal features [15] is particularly advantageous
in ADL recognition, where understanding the sequence and
timing of actions is crucial for accurately identifying specific
activities. For example, distinguishing between sitting down
and standing up requires not only spatial recognition but
also an understanding of the movement over time, which
3D CNNs are well-equipped to handle. Further improvements
in ADL recognition accuracy can be achieved through the
integration of self-attention mechanisms into the 3D CNN
framework. Self-attention modules improve the network’s
ability to concentrate on the most relevant aspects of the
input data, efficiently filtering out noise and highlighting the
key features most indicative of specific ADLs. By allowing
the model to selectively attend to important temporal and
spatial aspects of the video data, self-attention mechanisms can
significantly boost the precision of ADL recognition, leading
to more reliable and robust outcomes.

TABLE I
STATISTICS OF THE ETRI-ACTIVITY3D DATASET UTILIZED FOR THE

EVALUATION OF PROPOSED ADL RECOGNITION SYSTEM

Dataset ETRI-Activity3D

Videos 112, 620

Action Classes 55

Subjects 100

Mode RGB Videos

Training Set 90,064 videos

Validation Set 11,280 videos

Test Set 11,276 videos

This research, situated at the intersection of computer vi-
sion, gerontechnology (elderly care), and healthcare informat-
ics, aims to advance the state-of-the-art in ADL recognition
technologies. It seeks to contribute to the broader fields of
smart homes and smart cities, with a particular focus on non-
intrusive RGB video-based methods and the application of
advanced deep learning techniques, including skip connection-
enhanced 3D CNNs [16] and self-attention modules.

Problem Statement: The objective of this research is
to develop an advanced ADL recognition system utilizing
function f such that

f : V → A that maps a video sequence V to an ADL class
A, maximizing the classification accuracy:

argmax(f)
∑

(V, y) ∈ D|(f(V ) = y)/|D|
where I is the indicator function, i.e.,
f(V ) = y → 1 (predicted class matches true class)
f(V ) = y → 0 (predicted class does not match true class)

The key contributions of this research work to the field of
ADL recognition are:

• We propose an architecture comprising a 3D CNN aug-
mented with skip connections. This design facilitates

efficient extraction of spatio-temporal features from RGB
video inputs, subsequent to the application of diverse pre-
processing methodologies.

• To enhance the model’s capacity for comprehending com-
plex scenarios, we incorporate a self-attention mechanism
into the 3D CNN framework. This integration allows
the network to selectively emphasize the most salient
aspects of the input data, thereby improving its overall
performance in ADL recognition task.

• We conduct a comprehensive evaluation of the proposed
ADL recognition system utilizing the ETRI-Activity3D
dataset. Our analysis encompasses both qualitative and
quantitative assessments, providing a thorough examina-
tion of the model’s efficacy and performance character-
istics.

While our current research focuses on accurate ADL recog-
nition, we envision extending this work to enhance its im-
pact on elderly care. Future directions include developing
anomaly detection algorithms to identify deviations in be-
havior, creating a risk management framework to predict and
mitigate health and safety risks, and designing a personalized
alert system to notify caregivers based on individual needs.
Additionally, we plan to implement detailed ADL reporting
mechanisms to provide comprehensive insights into daily
activities, aiding healthcare providers in assessing health and
adjusting care plans. These extensions aim to develop a more
comprehensive and proactive elderly care solution, enhancing
the quality of life for elderly individuals and alleviating the
strain on traditional healthcare models.

In the following sections, we will detail our methodol-
ogy, including the overall model architecture, the dataset,
implementation detail used for training and evaluation, and
quantitative and qualitative experimental results. We will also
explore potential avenues for future inquiry within this re-
search paradigm, with a particular emphasis on enhancing
elderly care practices and improving health-related outcomes
for the aging population.

II. RELATED WORK

Motivated by the huge success of deep learning algorithms
in different computer vision fields, i.e., scene classification

Fig. 2. Model overview for ADL recognition. The 3D NumPy array is input to
a 3D-CNN with residual connections, which captures spatiotemporal features
from the video. The extracted features are then refined using a self-attention
block that enhances the model’s focus on relevant aspects of the activity.
Finally, the processed features are passed through fully connected layers,
with the output probabilities generated by a softmax layer, providing the final
predictions for different ADL classes.
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Fig. 3. Data preprocessing pipeline. The 3D video volume is first split into individual frames. From these frames, every nth frame is selected to reduce
redundancy and focus on key moments of the activity. The selected frames are then resized to the target dimensions. After resizing, the relevant portion of
each frame is extracted. Finally, the processed frames are saved as NumPy arrays, preparing them for input into the activity recognition model.

[17], action recognition , language and vision related tasks
[18], [19], researchers adopted these mechanisms for ADL
recognition as well. particularly, CNN based architectures
demonstrated great results. Where 2D CNNs outperformed
other algorithms for images, 3D-CNN are considered best for
video handling because of their ability to learn spatio-temporal
representations.

Numerous studies have creatively applied residual con-
nections within CNNs in diverse ways, improving informa-
tion flow, processing, and optimization in both images [20],
[21], [22] and videos [23], [24], [25]. RGB cameras, when
integrated with advanced and sophisticated computer vision
and deep learning techniques demonstrate superior capabilities
in recognizing a wide spectrum of complex ADLs. This
comprehensive recognition is crucial for providing a holistic
understanding of an individual’s daily routines and potential
health indicators [26].

TABLE II
QUANTITATIVE RESULTS

Accuracy Loss

Training Set 99.0 0.028

Validation Set 96.1 0.110

ETRI(FSA-CNN) [31] 90.1 -

III. METHODOLOGY

This section presents the proposed architecture for ADL
recognition, which leverages 3D Convolutional Neural Net-
works augmented with skip connections (Res-3D-CNN) [27]
as the primary feature extraction mechanism. The utilization of
3D CNNs with skip connections is particularly well-suited for
this task, as it facilitates the model capacity to effectively learn
both spatial and temporal information [28] from video data
which is a critical requirement for accurate ADL recognition.
Subsequent to feature extraction, a self-attention mechanism
[29] is employed to further refine the extracted features. This
integration of Res-3D-CNNs and an attention network further
enhances the model’s ability to capture underlying patterns
in the videos, thereby improving the action classification
accuracy. Figure-2 provides a schematic representation of the
overall architecture of the proposed system.

This research aims to develop a robust system for recog-
nizing and monitoring ADLs of elderly individuals using only

camera-captured video data. The primary objective is centered
on healthcare-related activities, with a secondary focus on the
surveillance of general daily routines.

Let V = {v1, v2, ..., vT } represents a sequence of video
frames over time T , where vt represents the tth frame. After
pre-processing, these frames are processed to extract spatial-
temporal features using 3D convolutional neural networks. The
extracted features fi, j, k(V ), representing the activation of the
k − th filter in the j − th layer for the i − th input feature
map , form the basis for recognizing ADLs.

The ADL recognition model F can be described by the
function:

ŷ = F (V ; θ)
where ŷ is the predicted activity label, and θ denotes the

model parameters. The learning objective is to minimize the
cross-entropy loss function:

L(θ) = 1
N

∑N
i=1 ι(yi, F (Vi; θ))

where N is the number of training samples, yi is the true
label for the i− th sample, and ι represents the cross-entropy
loss. 3D-CNN represents an advanced deep learning architec-
ture specifically designed to process the spatio-temporal data
inherent in video sequences. Its application in the recognition
of Activities of Daily Living (ADL) for elderly individuals
within smart home environment is of particular significance,
as it facilitates the simultaneous extraction of both spatial
and temporal features from video inputs. The architecture of
3D CNNs mirrors that of traditional 2D CNNs, with the key
distinction being the incorporation of an additional temporal
dimension. This allows 3D CNNs to capture the progression of
visual information over time by performing convolution oper-
ations across the three dimensions of height, width, and time.
As a result, the model effectively captures the spatio-temporal
information embedded within video sequences, providing a
robust feature set for accurately recognizing ADLs.

The integration of skip or residual connections into 3D
CNNs confers several distinct advantages. Residual connec-
tions, originally popularized in ResNet [16] architectures,
enable the network to bypass one or more layers, allowing it to
learn identity mappings more effectively. This design mitigates
the problem of vanishing gradients [30], a phenomenon of
particular concern in deep networks, thus enabling the training
of more profound model architectures. In the context of ADL
recognition, where accurately identifying subtle and varied
actions over time is crucial, residual connections enhance the
model’s ability to capture complex spatio-temporal features,
improving both convergence speed and overall performance.
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Fig. 4. (a) Training and validation accuracy, and (b) training and validation loss graphs. The graphs depict the model’s performance over the course of
training and validation, with accuracy increasing and loss decreasing as the model learns. (c) Confusion matrix for the test set, highlighting the classification
performance across various activities. Activities such as ’washing hands,’ ’washing towel by hands,’ and ’washing the dishes’ are among the most misclassified
(presented in red), indicating challenges in distinguishing between these similar actions. The matrix provides insights into the model’s strengths and weaknesses
in recognizing different Activities of Daily Living.

Additionally, these connections contribute to better general-
ization, reducing the risk of overfitting by encouraging the
reuse of features learned in earlier layers. This makes Res-3D-
CNN a powerful and efficient approach for ADL recognition,
providing a reliable foundation for monitoring and support-
ing the well-being of elderly individuals within smart home
environments.

In the proposed methodology for recognizing Activities of
Daily Living (ADL) in elderly individuals within smart home
environments, 3D Convolutional Neural Networks with skip
connections serve as the cornerstone for feature extraction,
generating robust spatio-temporal features from the input video
data. However, the gradual expansion of receptive fields in
deeper layers, combined with their fixed nature, often results
in inefficiencies in capturing global context, which can lead
to inaccurate classification in CNNs. The integration of self-
attention mechanisms with skip connections allows the model
to capture long-range dependencies in a single operation,
thereby improving both the accuracy and computational ef-
ficiency of the model. Moreover, skip connections facilitate
effective training by mitigating the vanishing gradient prob-
lem, stabilizing the learning process by preserving the original
input features, and maintaining a balance between learning
new features and retaining essential original information.

A. Dataset

The ETRI-Activity3D dataset [31], collected through Kinect
v2 sensor, was used to evaluate the proposed method. The
dataset comprised of a total of 112,620 videos obtained from
100 individuals consist of 55 action classes performed in the
living room, kitchen, and bedroom in a residential apartment
environment. Sample frames from example videos of ETRI-
Activity 3D dataset are shown in Figure-1. The dataset consists
of three modalities of RGB videos, depth maps, and skeleton
sequences. We selected the RGB video mode as input to our
proposed model. In our experimental design, we implemented

TABLE III
IMPLEMENTATION DETAIL AND TRAINING PARAMETERS

Spatial dimension 224 × 224

Epochs 100

Batch size 10

Learning Rate 0.0001

Weight decay 1 x 10−4

Warm up 05 epochs

Early stopping 10 epochs with Val Loss

Optimizer Adam

Loss Function Cross Entropy Loss

Evaluation Metric Accuracy

Deep Learning Framework Pytorch

Data preprocessing libraries NumPy, OpenCV

a stratified data partitioning strategy for the dataset. Specifi-
cally, we allocated 80% of the data for model training, while
reserving 10% for validation purposes and the remaining 10%
for final testing. Dataset statistics along with train-val-test split
information is desplayed in Table-I

B. Data Pre-processing

The 3D video volume undergoes an initial segmentation
process, resulting in the extraction of individual frames. Sub-
sequently, a systematic sampling procedure is applied, wherein
every 5th frame is selected. This strategic subsampling serves
dual purposes: it mitigates data redundancy and focuses the
model’s attention on salient temporal moments of the activity
under observation. Further, a spatial transformation is applied
to each selected frame, re-scaling it to the target dimensions
of 224 × 224, ensuring uniformity in input size. In the final
preparatory stage, these processed frames are converted and
stored as NumPy arrays facilitating efficient computational
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Fig. 5. Qualitative evaluation - examples of activity classification outcomes. The first row showcases successful classifications, whereas the second row
illustrates instances of misclassified activities, highlighting the discrepancies between the actual and predicted action labels. In both rows, the action class
label and predicted probability are overlaid on each frame, providing a visual representation of the model’s performance in real-time activity recognition..

handling. This pre-processing workflow is shown in Figure-
3

C. Implementation Detail

The implementation of the proposed ADL recognition sys-
tem leveraged PyTorch as the primary deep learning frame-
work. Table-III showcases the key training parameters and
implementation details of our system. As detailed in this table,
the model processes input data with a spatial dimension of
224 x 224 pixels over 100 epochs, using a batch size of
10. An early stopping mechanism that halts training after
10 epochs without improvement in validation loss. While we
initially set up the training for 100 epochs, due to the early
stopping mechanism, the actual training concluded after 41
epochs, indicating efficient convergence of the model. For
data preprocessing, a combination of NumPy and OpenCV
was employed. The model training was conducted on a high-
performance NVIDIA GeForce RTX 4090 GPU, ensuring
efficient computation for the complex 3D CNN architecture.
Hyperparameter management and experiment tracking were
facilitated through Weights & Biases, enabling systematic
optimization of the model.

D. Evaluation Metrics

For the quantitative assessment of our model’s performance,
we primarily employed accuracy as the evaluation metric.
Accuracy, defined as the proportion of correct predictions out
of the total number of predictions made by the model.

Accuracy = TP+TN
TP+TN+FP+FN × 100

where TP are True Positives, TN are True Negatives, FP
are False Positives, and FN are False Negatives.

IV. EXPERIMENTAL RESULTS

Our proposed model demonstrates exceptional performance,
as evidenced by both quantitative metrics and visual represen-
tations of the training process. Figure-4 (a) & (b) illustrates
the training and validation accuracy curves, along with their
corresponding loss graphs, depicting the model’s performance
over the course of training. These graphs show a consistent
increase in accuracy and a concurrent decrease in loss as

the model learns, indicating effective training dynamics. The
training curves demonstrate the model’s ability to fit the
training data well, while the validation curves provide insight
into its generalization capabilities on unseen data.

Table-II presents the quantitative results of our model’s
performance. Our approach achieved a remarkable 99.0%
accuracy on the training set and 96.1% on the validation set,
with corresponding low loss values of 0.028 and 0.110, respec-
tively. These results highlight the model’s strong predictive
capabilities and its ability to generalize well to new data.

Notably, our model outperforms the existing ETRI(FSA-
CNN) [31] implementation, evaluated on the same ETRI-
Activity3D dataset. This significant improvement of 6% en-
hancement underscores the effectiveness of our proposed
approach in recognizing ADLs from the ETRI-Activity3D
dataset, marking a substantial advancement in the field of
activity recognition for elderly care applications.

For more in-depth understanding of our model’s perfor-
mance across different activities, Figure-4 (c) presents the
confusion matrix for the test set as true labels on the y-axis
and predicted labels along the x-axis. This matrix offers valu-
able insights into the classification performance for various
ADLs. While the model demonstrates high accuracy overall,
it reveals specific challenges in distinguishing between certain
similar actions. Activities such as ’washing hands,’ ’washing
towel by hands,’ and ’washing the dishes’ are among the
most frequently misclassified, as indicated by the red cells
in the matrix. These misclassifications highlight the inherent
difficulty in differentiating between activities that share similar
motion patterns and environmental contexts. The confusion
matrix thus provides a detailed view of the model’s strengths
and areas for potential improvement in recognizing different
ADLs.

Qualitative results in Figure-5 showcases examples of activ-
ity classification outcomes, offering a visual representation of
the model’s real-time activity recognition capabilities. The first
row displays instances of successful classifications, demon-
strating the model’s accuracy in correctly identifying various
ADLs. In contrast, the second row illustrates cases where the
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model misclassified activities, highlighting the discrepancies
between the actual and predicted action labels. For each
frame, we overlay the action class label and the predicted
probability, allowing for a detailed examination of the model’s
decision-making process and confidence levels across differ-
ent scenarios. This qualitative evaluation complements our
quantitative results, providing insights into both the strengths
and limitations of our ADL recognition system in practical
applications.

V. CONCLUSIONS & FUTURE WORKS

In this research work, we proposed ADL recognition model
for elderly care applications, leveraging advanced 3D CNN
with skip connections and self-attention mechanisms. Our
model demonstrated superior performance, achieving higher
accuracy on the validation set and outperforming the baseline
model. The comprehensive evaluation, including quantitative
metrics, confusion matrices, and qualitative examples, under-
scores the robustness and efficacy of our proposed system in
accurately recognizing a wide range of ADLs in real-world
scenarios.

Future directions for this research are promising and mul-
tifaceted. We aim to develop anomaly detection algorithms
to identify behavioral deviations, potentially indicating health
issues or cognitive decline. Creating a risk management frame-
work and designing a personalized alert system will enhance
preventive capabilities and ensure timely interventions. Im-
plementing detailed ADL reporting mechanisms will provide
comprehensive insights for healthcare providers. These future
endeavors aspire to transform our ADL recognition system
into a more comprehensive and proactive elderly care solution,
potentially improving the quality of life for elderly individuals
and reducing the burden on traditional healthcare models.
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