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Abstract—While DCGAN as deep learning model utilizing 
spectrogram, allows for detection of deepfake audio, it is prone to 
overfitting which affects its ability to discriminate between real 
and fake audio.  In this study, batch normalization is incorporated 
into both the generator and discriminator to address training 
instability. The datasets, consisting of real human speech and 
DeepFake renditions generated through Retrieval-based Voice 
Conversion (RVC), are categorized into 'REAL' and 'FAKE' 
(FoR) classes and preprocessed using Audacity and Sonic 
Visualizer. The paper introduces an enhanced DCGAN model for 
augmenting samples in voiceprint recognition and evaluates 
various spectrogram techniques—Mel-Spectrograms, GTCC, 
MFCC, and Chroma-CQT—to improve detection accuracy. The 
model achieved a training accuracy of 92.86% and a validation 
accuracy of 91.67%, underscoring the potential of advanced deep 
learning methods to ensure audio authenticity against deepfake 
threats. 

Keywords—waveforms, spectrogram, deepfake audio, 
CNN, DCGANs 

I. INTRODUCTION  
The proliferation of deepfake technology, particularly in 

audio, poses significant threats to the integrity and security of 
digital content distribution. Deepfake audio involves the 
synthesis of realistic-sounding speech that mimics a target 
speaker, and it can be used maliciously to disseminate false 
information, sway public opinions, or impersonate individuals 
for fraudulent activities. The increasing sophistication of these 
deepfakes necessitates the development of robust detection 
mechanisms to ensure the authenticity and reliability of audio 
content across various applications, including media, 
communications, and cybersecurity. 

A spectrogram provides a comprehensive visualization of 
audio, depicting time, frequency, and amplitude within a single 
graph. A time-domain signal is split into equal-length segments 
by signal analysis software, which then applies the Fast Fourier 
Transform (FFT) [1] to each segment to transfer the data from 
the time domain to the frequency domain and create a 
spectrogram. Dynamic signals, such as output signals from 
communication devices, vary in amplitude over time, presenting 
two primary challenges: analyzing them, particularly through 
spectral analysis, and processing the signal, such as designing 
filters to achieve desired transformations. To analyze time-

varying signals from devices, it is essential to establish a 
waveform that visualizes and converts the data into a useful 
format. Plotting the signal's amplitude on the vertical axis and 
time on the horizontal axis produces this waveform.. 

Converting an audio signal to a spectrogram is a crucial step 
in detecting deepfake audio. A neural network can automatically 
identify and extract significant voiceprint features associated 
with the study target for classification once the speech signal has 
been transformed into a spectrogram [2]. The visual 
representation of these spectrograms allows deep learning 
models, particularly convolutional neural networks (CNNs), to 
analyze and differentiate between authentic and synthesized 
audio. Using audio signal spectrograms has proven highly 
effective in detecting deepfake audio [1]. Artificial intelligence 
techniques are used to create realistic-looking but phony images, 
sounds, and videos, a phenomenon known as "deepfake 
technology.". Deepfake audio often exhibits inconsistencies in 
spectral patterns due to artificial synthesis methods, which can 
be detected by analyzing the spectrogram. Deepfakes are a 
serious threat to society, democracy, national security, and 
individual privacy, which emphasizes the necessity for efficient 
detection techniques to counter these possible dangers [3]. 

A family of machine learning models called Generative 
Adversarial Networks (GANs), first introduced by [4], are used 
to produce fake images. A GAN is consist of two networks: the 
discriminative network determines whether the generated 
images are legitimate, and the generative network uses an 
encoder and decoder to produce fake images. Several variations 
of GANs have been developed and used for supervised learning, 
semi-supervised learning, and picture synthesis. However, 
DCGANs, which are used to generate high-resolution images, 
are prone to model collapse and non-convergence, leading to 
poor generation quality. To ensure stable GAN training, the 
Wasserstein Distance in the discriminator is used by 
Wasserstein Generative Adversarial Networks (WGANs) to 
make sure that the parameter matrix meets Lipschitz 
requirements, which guarantees stable GAN training [5]. 
Excellent results were obtained using the Spectral 
Normalization (SN) approach, which was proposed in [6] for 
SNGAN, on datasets like LSUN, CIFAR-10, and ILSVRC2012 
[2]. 
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Five GAN variants, DCGAN, Wasserstein GAN (WGAN) 
[5], WGAN with gradient penalty (WGAN-GP) [7], Least 
Squares GAN [8], and PGGAN [9]-have all been utilized to 
create fictitious 64x64 images. To validate the suggested 
technique, a total 10, 000 test photos with both fake and actual 
data and 385,198 training images were obtained [10]. The 
importance of spectrogram-based analysis lies in its ability to 
visually represent the frequency spectrum of audio signals over 
time, enabling detailed analysis of audio characteristics that are 
often imperceptible to the human ear. This method transforms 
audio signals into spectrograms, facilitating the identification of 
subtle anomalies and patterns that traditional audio analysis 
methods might miss. 

II. RELATED WORKS 
The increasing quality of deepfakes necessitates 

corresponding improvements in the performance of detection 
methods, as highlighted in [10]–[14] and summarized in Table 
1. 

TABLE 1. TECHNIQUES AND CLASSIFIERS FOR DETECTING DEEPFAKE 

Deep Convolutional Generative Adversarial Networks 
(DCGANs) offer a robust approach to detecting deepfake audio. 
By training on spectrogram representations, DCGANs learn to 
distinguish between real and synthetic audio samples by 
capturing unique features indicative of genuine audio and 
identifying discrepancies present in deepfakes. DCGANs can be 
integrated with other deep learning models, such Recurrent 
Neural Networks (RNNs) and Convolutional Neural Networks 
(CNNs), to further improve detection skills and allow for more 
thorough study of the temporal and spatial elements of audio 
data. This integrated process not only improves detection 
accuracy but also provides a scalable solution for analyzing 
large volumes of audio data, addressing the growing threat of 
deepfake audio in digital content distribution frameworks [15], 
[16]. 

To overcome limitations in data, [17] proposed a study 
utilizing DCGANs to enhance speech data using mel-
spectrograms. This method enhances the robustness and 
accuracy of deepfake audio detection systems, providing a 
reliable way to counteract the increasing sophistication of audio 
deepfakes [15], [18]. By training DCGANs on spectrogram 
representations of audio, the model can learn to identify unique 
features of genuine audio and detect discrepancies in deepfake 
audio. This integrated process not only improves detection 
accuracy but moreover provides a scalable answer for analyzing 
large volumes of audio data. 

III. METHODS 
Datasets are sourced from Kaggle, consisting of two forms: 

real human speech and DeepFake renditions created using 
Retrieval-based Voice Conversion (RVC) [39]. These datasets 
are categorized into 'REAL' and 'FAKE' classes, with audio 
filenames indicating the original speaker and the converted 
voice. The tools required for converting audio to spectrograms 
include those for audio editing and pre-processing [20] and for 
converting audio files into spectrograms [21]. The original audio 
classification dataset [27] includes recordings of eight famous 
popular individuals, using AI to produce voice and genuine 
audio gathered from the internet and produced through RVC. 
The pre-processed audio files are saved in WAV format, and the 
corresponding spectrograms are saved as PNG images. 

TABLE 2. DATASETS FOR TRAINING, TESTING AND VALIDATION 

Individual Source Length (MM:SS) 

Joe Biden Victory Speech2 10:00 

Ryan Gosling Golden Globes Speech3 1:33 

Elon Musk Commencement Speech4 10:00 

Barack Obama Victory Speech5 10:00 

Margot Robbie BAFTAs Speech6 1:19 

Linus Sebastian  Down Monologue 9:30 

Taylor Swift Women in Music Speech 10:00 

Donald Trump Victory Speech 9 10:00 
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3.1 Audio to Spectrogram Conversion 
The generation process of spectrogram [19] is shown 

in Fig. 1. 
 
 
 

 
 
 
 
 
 
 
 
 

 
The process begins with reading the audio file into a time-

domain signal and applying the Fast Fourier Transform (FFT) 
to convert it into a frequency-domain representation, where the 
magnitudes of frequency samples represent the amplitude of the 
signal's frequency components. The signal is then divided into 
overlapping segments, each multiplied by a window function to 
reduce spectral leakage, and mapped to the Mel scale, spacing 
frequency bins more closely at lower frequencies and more 
widely at higher frequencies. Finally, a logarithmic 
transformation is applied to the Mel-frequency components to 
compress the dynamic range, resulting in a spectrogram that 
visually represents the time, frequency, and magnitude of the 
signal's components. 

 
3.2 Audio Deepfake Detection Process 

 
 
 
 
 
 
 
 
 
 

The figure illustrates the general process for AD [30], [32], 
[33], [34] detection. Each audio clip is pre-processed and 
converted into Mel-spectrograms. After that, the detection 
model receives these features and uses them to do all necessary 
tasks, including training. In order to introduce nonlinearity, the 
output is sent through a fully connected layer with an activation 
function. This produces a prediction probability that classifies 
the audio as either real (class 1) or fake (class 0). 

 
3.2.1 DCGANs Architecture 
Following the successful applications of convolutional 

neural networks (CNNs) [23], [29], DCGANs were created by 
combining CNNs with GANs after researchers realized its 
potential [24] used a deconvolutional neural network 
architecture for the generator and fully convolutional networks 
in place of the multi-layer perceptron (MLP) structure that was 

originally used by [25]. Furthermore, batch normalization and 
ReLU activation were integrated into DCGAN. As a result, 
deconvolution was used more frequently in GAN generator 
architecture, and DCGAN became more well-liked [26]. 

 
One of the main architectural aspects of DCGAN is that 

strided convolutions in the discriminator and fractional-strided 
convolutions in the generator take the place of pooling layers. 
Both the discriminator and the generator use batch 
normalization. Deeper architectures are made possible by 
removing fully connected hidden layers. With the exception of 
the output layer, which use tanh to accommodate input images 
scaled to the range [-1, 1] from the original range [0, 255], the 
generator uses ReLU activation for all layers. All layers of the 
discriminator use LeakyReLU activation. 

 
Here are the formulas for the evaluation of different 

spectrograms. Mel-Spectrograms, GTCCs, MFCCs, and 
Chroma-CQT are used to extract key spectral and temporal 
features from audio signals to detect deepfake audio. These 
features highlight different aspects of the audio's frequency 
content, aiding in distinguishing genuine audio from 
manipulated versions. 

a. Mel-Spectrograms; 
      ,  =    ∑ |, |                                   (1) 
   

where: (,) represents the magnitude of the Fourier 
transform of the k-th Mel filter applied to the windowed audio 
signal. 

b. Gammatone Frequency Cepstral Coefficients (GTCC) 
 = ∑  ||∑ 

 
 .  .

  (2) 
 
where: () represents the output of the k-th gammatone 

filter at time index , and  is the number of DCT coefficients. 
 

c. Mel-Frequency Cepstral Coefficients (MFCC);                                     
 = ∑   ∑

 
 |.  .

  3 
 
where: Xk(fj) represents the magnitude of the Fourier transform of 

the -th Mel filter applied to the audio signal at frequency bin , and 
 is the number of DCT coefficients 

 
d. Chroma Constant-Q Transform (Chroma-CQT) 

ℎ,  =    ∑ |, |∊  4 
 
where: (,) represents the magnitude of the constant-Q 

transform of the audio signal at frequency  and time , and 
ChromaBand() represents the frequency bins corresponding to the 
-th chroma band. 

 
The DCGANs model performance is evaluated based on 

the following evaluation metrics: 
 

Accuracy to measure the percentage of sample properly 
identified relative to the total number of samples.  

 

Fig 1. Conversion process of an input audio signal into spectrogram 

Fig. 2 Illustration of AD process [22] 
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 =     
     100% 5 

 
Precision is a metric that expresses the percentage of 

actual positive predictions among all positive predictions the 
model generates. 

 
 =  

   6 
 

Recall, which is often referred to as sensitivity or true 
positive rate, quantifies the percentage of actual positive data 
instances that are genuine positive forecasts. 

 
 =  

    7 
  

F1 Score, is the precision and recall harmonic mean.  
 

1  = 2  ∗ 
     8 

 
The detection framework's performance is validated using 

10-fold cross-validation to ensure reliability and 
generalizability across different datasets. 
 

IV. RESULTS AND DISCUSIION 
For the experiments conducted in this paper, the authors 

used an Intel(R) Core (TM) i7-7800x CPU at 3.50GHz, with 16 
GB of memory, and a T4 GPU with 11GB of memory. The 
software requirements included Python 3.6.6, TensorFlow 
1.10.0, and Google Colab. 

 
3.1 Dataset Analysis  

 Audio segments [27] are cropped, preprocessed, and 
converted from waveforms into spectrograms [28], [33]. The bit 
rates of the audio samples range from 1411 kbps to 1536 kbps. 
Furthermore, the sample rates span between 48000 Hz and 
44100 Hz.  

 

 

 

 

 Fig. 3 represent the original audio waveforms of Linus's 
speech, while the Fig. 4 illustrate the transformed audio 
waveforms where Linus's speech is converted to sound like 
Biden's voice. After following the conversion steps from 
waveforms to spectrograms, the resulting spectrograms are 
presented below. 

 

 

 

 

 

 

TABLE 3. DCGAN PARAMETERS 

Layer 
Output Shape  

(N, H W) Param #s 

conv2d (Convo2D) (None, 62, 62, 64) 1792 

max_pooling2D (None, 31, 31, 64) 0 

conv2d_1 (Conv2D) (None, 29, 29, 128) 73856 

max_pooling2d_1 (None, 14, 14, 128) 0 

flatten (None, 25088) 0 

dense (None, 128) 3211392 

dropout (Non, 128) 0 

dense_1(Dense) (None, 2) 258 
  

 The table presents the parameters of the DCGAN. From left 
to right, each row describes the layer's characteristics, its output 
format, and how many parameters it has.. The output shape is 
represented as (N, H, W), where N is the number of feature maps 
produced, the width is W, while the height is H [31].  

TABLE 4. METRICS WHILE APPLYING A CLASSIFER BASED ON RULES 

Class                        Metric 

 
Precision Recall F1-Score 

Real 0.370 0.590 0.450 

Fake 0.880 1.000 0.930 

Weighted Average 0.770 0.880 0.820 

  

 Metrics were evaluated using a single rule-based classifier to 
split predictions based on the 2nd Mel Frequency Cepstral 
Coefficient. Using this feature, a mean accuracy of 88% was 
achieved over 10-fold cross-validation. 
 
 
 
 
 
 

 
 
 
 

Fig. 5 Graph of a) Training/Validation Accuracy 
b) Training/Validation Loss 

  

 The training and validation data were processed over 30 
epochs. Upon evaluating the model on the test data, the results 
are reflected in Fig. Over 30 epochs, the DCGAN model exhibits 
a noticeable upward trend in training and validation accuracy, as 
shown in Figure 8, indicating effective learning on the training 
data. Concurrently, the training and validation loss curves 
demonstrate a low and stable error rate, highlighting that the 
network is learning at a reasonable rate. By the end of the 30 
iterations, the accuracy rate improves, and the loss value 

Fig 3. Sample Authentic vs Synthesized Audio Waveform 

Fig. 4 Sample Authentic vs Synthesized Audio Spectrogram  

 

(a) (b) 
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decreases, confirming successful model generalization and 
convergence. 

TABLE 5. OBSERVED STATISTICS IN THE DATASET ACROSS THE TWO DATA 
CLASSES 

Attribute  Real  Fake 

(Overall Average) Mean Med Std. Mean Med Std. 

Mel-Spectrograms -52.50 -52.8 14.83 -56.7 -58.16 15.2 

GTCC -21.2 -5.66 94.3 -19.59 -3.98 91.56 

MFCC -21.29 -5.66 94.3 -19.5 -3.98 91.5 

Chroma-CQT 0.491 0.45 0.28 0.458 0.41 0.29 

  

 The spectrogram evaluation metrics reveal distinct 
characteristics for each audio feature type. The Mel-
Spectrogram values cluster around -54 dB with moderate 
variability, indicating consistent energy distribution across the 
frequency spectrum. The GTCC and MFCC metrics, sharing 
identical values, show significant variability with a mean around 
-20 and high standard deviation, reflecting diverse signal 
characteristics. In contrast, the Chroma-CQT metrics are more 
consistent, with values centered around 0.47, indicating stable 
harmonic content. These values are derived from the logarithmic 
scale (dB) used in audio signal processing, where negative 
values indicate lower energy or intensity levels. 

 The training results demonstrate a well-performing model 
with 92.86% for training and 91.67% for validation accuracy, 
indicating that the model has effectively learned the patterns in 
the data and generalizes well to unseen data. The test loss of 
0.3137 and the lower validation loss further suggest that the 
model is not overfitting and maintains a balanced performance. 

V. CONCLUSIONS 
The study highlights the increasing threat posed by deepfake 

audio technology, which can convincingly mimic real speech, 
posing risks to misinformation, fraud, and cybersecurity. To 
combat these threats, the research explores the use of 
spectrograms—visual representations of audio frequencies over 
time—to detect deepfake audio. By converting audio signals 
into spectrograms, DCGANs can analyze and identify 
inconsistencies characteristic of synthetic speech. This approach 
forces the ability of deep learning models to process and classify 
complex patterns in the spectrograms, enhancing the accuracy 
of deepfake detection. 

 The study employs various techniques to improve detection, 
including data augmentation, preprocessing, and the integration 
of multiple spectrogram types such as Mel-Spectrograms, 
GTCC, MFCC, and Chroma-CQT. The study demonstrates that 
DCGANs, can effectively discriminate between real and fake 
audio, achieving an accuracy of 92.86%. The model's 
performance is validated through extensive testing and 10-fold 
cross-validation, showing promising results in distinguishing 
genuine audio from deepfake samples. Overall, the study 
underscores the potential of DCGAN methods to address the 
growing challenge of deepfake audio in digital content, ensuring 
the integrity and authenticity of audio communications. 
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