979-8-3503-6463-7/24/$31.00 ©2024 IEEE

FedSTGNN:

A Federated

Spatio-Temporal Graph Neural Network

Heeyong Yoon
Department of
Electrical Engineering
and Computer Science
DGIST
Daegu, Republic of Korea
sunrise2575 @dgist.ac.kr

Abstract—Owing to the explosive growth of the Internet of
Things (IoT), there have been vast volumes of sensor-generated
time series data in various locations. A lot of network usage
occurs through these locations to process the sensor-generated
data. To reduce network usage, the point of data processing
gradually shifts from the central cloud to servers at the edge
of the Internet, called edge servers. To cover the paradigm shift,
there has been a challenging issue in training a neural network
model, which aggregates the data generated by different locations
and causes a massive amount of transmitted data across the
network. Federated learning successfully resolves this issue by
exchanging model parameters in the edge server through the cen-
tral cloud. Meanwhile, Spatio-Temporal Graph Neural Networks
(STGNNs) have gained much attention for analyzing time series
data transmitted from several locations in IoT environments.
Despite the increasing number of STGNN models that have
been examined, the integration of STGNNs and federated learn-
ing remains underexplored. This paper presents FedSTGNN, a
framework that seamlessly adapts arbitrary STGNN models to
edge computing environments. The proposed method partitions
the spatio-temporal graph with a mathematical definition and
then trains each partitioned data with an arbitrary STGNN
model on edge servers separately. Then, it aggregates all the
model parameters in the central cloud with dramatically reduced
network usage. Through experiments, we demonstrate that the
FedSTGNN framework could train the model with a reduced
amount of network communication by utilizing the advantages
of edge computing and a slight loss in accuracy.

Index Terms—spatio-temporal graph neural network, feder-
ated learning, IoT, machine learning framework, traffic data

I. INTRODUCTION

The widespread use of mobile devices and the emergence
of the Internet of Things (IoT) have resulted in the spread
of numerous sensors and small-scale computer devices, which
generate massive amounts of heterogeneous data. The flood of
data has caused the problem of oversaturation of communica-
tion networks (called the network traffic problem), as all data
is collected to centralized servers across the Internet network
[1].

To handle the network traffic problem, edge computing
[2] that moves computations from the central cloud to the
edge servers of the Internet has been proposed. The edge

* corresponding authors

Kang-Wook Chon*
School of Computer
Science and Engineering
KOREATECH
Cheonan, Republic of Korea
kw.chon @koreatech.ac.kr

1868

Min-Soo Kim*
School of Computing
KAIST
Daejeon, Republic of Korea
minsoo.k @kaist.ac.kr

computing could make the computations closer to the data
sources. This strategy avoids network saturation because each
edge device collects data individually in each region and then
transmits only a small amount of data (i.e., the computation
results instead of whole datasets). Fig. 1 shows an example
of the difference between centralized computation and edge
computing. In the central cloud-only method, the central cloud
m receives all the information from all sensors, while in the
edge computing environment, the edge server m; and mo
receive local sensor information and transfer only essential
information from raw sensor value to the central cloud m.
Using this strategy, edge computing can reduce Internet traffic
and offload computation to the edge of the Internet.

sensors at
several locations

central cloud-only edge computing

Fig. 1. Difference between centralized computation and edge com-
puting. The circle with a number is a sensor (i.e., data source), m is
the central cloud, mo and m, are edge servers.

As the data size from sensors and computing power from
edge servers increase, a new approach, federated learning [3],
has been proposed. This method is one of the distributed
machine learning methods and exchanges only the model
parameters between the edge servers and the central cloud.
It moves the model training jobs to the edge servers closer
to data sources (i.e., sensors). Specifically, each edge server
trains its local model and then transmits each parameter to
aggregate all the parameters trained in each edge server to the
central cloud. Here, the central cloud updates the global model
using the parameters from the local models.

By handling traffic, climate, or several time-based informa-
tion from numerous sensors, Spatio-Temporal Graph Neural
Networks (STGNN) [4]-[7] have recently gained popularity

ICTC 2024

to extract insights from raw sensor data. This model considers
sensors scattered across the area as a spatio-temporal graph
and applies neural network operation, including Graph Neural
Network (GNN), to predict future sensor values or classify
outliers. The spatio-temporal graph data is considered as a
combination of spatial and temporal information: a weighted
graph from sensor locations and multiple time series on every
vertex from sensor output values. Fig. 2 depicts an example
of spatio-temporal graph. Each sensor produces continuously
measured values over time. In order to consider the values as
the spatio-temporal graph, each sensor becomes a vertex, edges
between sensors can be drawn based on the sensor proximity
(i.e., the distance between sensors), and all the values produced
from sensors are considered as time series data.

.«{!:’ j’

Ot @tnr
LN Ot~ Oy

sensors producing
values by time

spatio-temporal graph
(weighted graph and time series)

Fig. 2. Example of a spatio-temporal graph.

Since the spatio-temporal graphs grow along two axes (i.e.,
spatial scale and time scale), the required training time and
amount of transmitted data via the network can be easily larger
than a single-axis dataset like a set of images or words so that
it can increase the network usage during training under typical
centralized training methods. Therefore, applying federated
learning to STGNN models has become more critical.

In this study, we propose a federated learning framework
for STGNN, named Federated Spatio-Temporal Graph Neural
Network (FedSTGNN). This framework integrates the con-
cepts of STGNNSs and federated learning, which have not been
presented. By utilizing the integrated concept, the proposed
framework could reduce network utilization during training
spatio-temporal graphs even though the data sizes are growing
across edge devices. The proposed framework provides the
generalized method, which could replace the arbitrary STGNN
model with the function of federated learning, powered by the
rigorous definition of federated learning for spatio-temporal
graphs. Our framework shows acceptable accuracies (i.e.,
sensor value prediction) compared to the existing STGNN
models that simply aggregate parameters.

To summarize, our main contributions are as follows:

o Flexible framework: We propose a general framework
for training a spatio-temporal graph in federated learning,
which does not depend on a specific model by its defini-
tion. To ensure that the model part can be replaced with
an arbitrary model, we define local STGNN prediction
using the concept of local vertex value.

o Decent prediction and network cost performance: This
framework transforms an arbitrary centralized STGNN
model into a federated version of the STGNN model. De-

spite learning with separated data on each edge server, it
shows adequate prediction loss, which can make training
harder than a centralized model. Also, edge computing
empowers the framework to minimize network utilization
between edge servers and the central cloud rather than
directly sending information from sensors to the central
cloud.

The rest of this paper is organized as follows. In Section II,
we explain the essential concepts for understanding STGNN
and federated learning. Section III explains the detail of our
framework. We analyze and discuss the performance of our
framework in Section IV. Finally, Section V concludes the

paper.
II. PRELIMINARIES

We describe how the sensor environment can be viewed
as a spatio-temporal graph and its prediction method in Sec-
tion II-A, and explain the operation of federated learning with
some related works in Section II-B.

A. Spatio-temporal graph neural networks

A spatio-temporal graph is an abstract data type combining
spatial and temporal data. Assume that sensors are installed
in specified areas to collect data. We can consider each sensor
as a vertex v € V and the relationship between them (e.g.,
distance) as a weighted edge (u,v,w) € &, where u and v
(u,v € V) are vertices, and w is the weight between u and v.
Each sensor v collects values xq(f) € X at each time t € T.
As a result, spatial information, such as sensor locations, can
be represented as a weighted graph, and temporal information,
such as sensor value, can be represented as a time series. By
combining the weighted graph and the time series, a spatio-
temporal graph G = (V,&,T,X’) can be formulated.

For the sake of simplicity, we can combine (), &) into
adjacency matrix A and vertex value set X into vertex value
matrix X. Finally, we can define a spatio-temporal graph using
only matrices.

Definition 1 (Spatio-temporal graph). A spatio-temporal graph
G is defined as
G=(4X), ey

where A € RIVI*IVI is an adjacency matrix, and X € RI7x/VI
is a vertex value matrix. Note that V is a vertex set, T is a
timestamp set, and R is the set of real numbers.

To simplify the representation of the part of the matrix in the
following discussion, we now use the following notations for
the matrix. For a given two number 0 <: < JTand 0 < j < J
for a matrix B € R’*7 an element at row ¢ and column J
can be represented as B; ;. Using a colon (:), a matrix B can
be sliced into smaller matrices. When the colon is alone, it
means all the possible ranges of row or column of the matrix,
therefore B; . € R”. For x and y where it satisfies < y, the
notation x:y represents a slice of the matrix following either
row or column axis such as By., . € Ry—)xJ

To insert the given spatio-temporal graph G as the input
of an STGNN model, G needs to be preprocessed using a

1869

sliding window [8]. This data extraction method generates
multiple short time series by overlapping a fixed-size window
whose length of temporal axis is i, +tou. The sliding window
generates the larger training datasets than those of the original
time length |7|. More specifically, for all timestamp ¢ € T
that satisfies ¢, < ¢t < |T| — tow the sliding window
method extracts all possible slices of matrix Xy ¢4, €
Rt tta) XIVI from X. Each slice of matrix is divided into
two part; X; .. € RVl and Xttt € Rtewx|Vl Then
we consider X;_,, ... as the model input and Xy, 14, . as the
model output to train the model fy by the following Eq. (2).

Definition 2 (STGNN prediction). For each ¢t € 7%, an
STGNN prediction model fy can predict ¢y, time length of
future vertex value)A(t:tﬂou“; from t;, time length of past vertex
value X;_; .t, with the adjacency matrix A, such as

Xt:t—',—t‘,m,: = f9 (Aa Xt—t;“:t,:)7 (2)

where 7% = {t [t € T,tin <t < |T| — tou}. The predicted
future value X;.144,,: is then compared to the actual future
value X;.444,,,: for calculating the mean prediction loss £ using
a loss function £ as
1

(= ——_
7

Z £<Xt:t+tom,:aXt:t+tom,:)' (3)
teT*

B. Federated learning

Federated learning is first shown in the study [3]. This
learning method is achieved by repeatedly executing several
rounds: each edge server m; receives local training data from
its data source and trains separately by a few epochs 7. The
edge server m; sends only its local model parameter 6; to
the central cloud m. The central cloud m updates the global
model parameter 6 by averaging the received local parameters.
The updated global parameter 6 is replicated to the local
model parameter ;. The global and local model parameters are
updated, and eventually, it converges model loss by repeating
p rounds.

Some studies have tackled the idea that edge servers can
contribute differently during training. AgnosticFL [9] raises
the issue that not all edge servers contribute to learning
models equally. Unlike the original federated learning method,
which accepts the local parameters fairly, this study applies
a contribution weight A for the global model on each edge
server and updates all A weights. FedOV [10] resolves the
overconfidence classification problem induced by each edge
server’s biased local data. Specifically, this method suggests
that edge servers vote to postpone the classification of the
out-of-distribution data.

Another type of federated learning enhancement focuses on
reducing total learning times. The computation power of each
edge server can vary widely, such as the difference between
a low electric power device and a high-performance GPU
server, which can lead to delayed training time bounding to
the slowest edge server. FedProx [11] proposes a method
adjusting the number of local epochs per round and per edge
server. SplitFed [12] shows a different approach that partitions

the whole model into sub-models in order to train models
cooperatively on both the central cloud and edge server, rather
than offloading the entire model training process on the edge
server side.

III. FEDSTGNN

This section introduces our framework, FedSTGNN, and
its detailed workflows. Before explaining the overall frame-
work, we explain the local vertex value X (), local prediction
method, and global aggregation process.

In the edge computing environment, it is preferred that each
edge server receives information from nearby sensors to reduce
network usage. Therefore, each edge server only sees a partial
part of the data during the federated learning. In the spatio-
temporal graph, each sensor is considered as a vertex v € V,
so we can define the local vertex value X (i), which is the
partial part of the X.

Definition 3 (Local vertex value). The vertex is partitioned
into several disjoint sets V() C V for each i-th edge server. In
this case, each edge server only processes partial vertex value
X e RITIXIVI where all the matrix elements corresponding
to absent vertices are zero-filled, which is, for every v € V,
X0 = {X eVt)
’ 0 otherwise
In the same manner of Definition 2, the local vertex value
X from Eq. (4) is divided into several slices Xt(z—)t;“:t ot
Rttt XVl quch that ¢ € 7%, and partitioned into input and
output parts, Xt(l—)tm:t,: and Xt(ft) +t.,:0 TESPectively. Because the
location of each sensor does not rapidly change through time
like the traffic or climate sensors, all edge servers can be aware
of the location of each sensor; therefore, adjacency matrix A
in Eq. (1) commonly exists for all edge servers. By the above
concept, we can define federated STGNN prediction.

Definition 4 (Local STGNN prediction). Each i-th edge server
predicts the local predicted value Xt(ft) +1,,,: DYy the following
equations.

Xt(:it)+toul,: = fGi (AvXt@tm:t,:)v %)

such that ¢ € 7* from Definition 2, and fy, is a local model
on each i-th edge server containing its local model parameter
;. The loss of the model is computed by the same equation
of Eq. (3), only replacing all X in the equation to X (),

Using Eq. (5), each local model fy, is trained. These trained
local models are then aggregated into a global model in
the central cloud. We apply FedAvg [3] to the aggregation,
averaging each local model parameter to the global model
parameter and broadcasting them back to the edge servers.

Fig. 3 shows the overall process of FedSTGNN. The local
vertex value X () is transmitted into i-th edge server, and the
model fp, in each edge server receives local sensor data with
pre-given adjacency matrix A at step (D. Each edge server
independently trains and updates its local model parameter
9; in step @. In step B), each edge server uploads its

1870

model parameter to the central cloud through networks. After
uploading model parameters, the central cloud averages all
received local parameters 6; and applies them into the global
model parameter 6. The integrated model is then distributed
back to the edge server and is overwritten to each local model
at step @. By repeatedly training local and global models
through step (D to @, all parameters in each edge server
are gradually trained without exchanging data between edge
servers. Note that the process from step (D to @ is called
a round; therefore, if there are ten rounds, the central cloud
parameter ¢ is updated ten times.

central cloud m

Q)
7~ AN Y
| oS8 1| o=
“é local param. 8, § local param. 8,,_;
2 @ 3) o @ 3
] o‘@e‘e - o.@e ®
adj. mat. 4 adj. mat. 4
on—" |9 Otr— | ©
@M @&,
@Mt ®1\/_\,t

local sensor data X (@ local sensor data X ™1

Fig. 3. Overview of FedSTGNN.

The mechanism of FedSTGNN can be represented as Algo-
rithm 1. At first, the framework prepares the loss record list R
for the performance evaluation (Line 1 of Algorithm 1). By
each round r, FedSTGNN performs the same procedure for
every i-th edge server (Lines 2-3 of Algorithm 1). The model
fo, is updated by several arguments as mentioned in Eq. (5),
and it validates model performance to get the mean local
model loss ¢; (Line 4 of Algorithm 1). Each model parameter
is collected and averaged in the central cloud to overwrite the
global model parameter 6 (Line 5 of Algorithm 1). The global
model fy is then tested for the framework evaluation (Line 6
of Algorithm 1). Finally, the central cloud broadcasts global
model parameter 6 to each local model parameter #; (Lines
7-8 of Algorithm 1). The tuple of global mean loss ¢ and
local mean loss ¢; is appended to the loss record R for the
performance examination (Lines 9-10 of Algorithm 1).

The structure of FedSTGNN leads to various advantages.
First, since only model parameters 6; are transferred between
the edge server and the central cloud, FedSTGNN can reduce
significant network utilization compared to the central cloud-
only case. In central cloud-only case, every j-th sensor in V
sends value X ; such that ¢t € T, so the total network usage

Algorithm 1 FedSTGNN

Data: A, /* Adjacency matrix of sensors */
X; C X, /* ¢-th partition of sensor data */
0, /* a model parameter in the central cloud */
0; € ©, /* a model parameter in i-th edge server */
?, I* mean loss of the central cloud model */
4;, /* mean loss of i-th edge server model */
p, I* the number of rounds */
n, /* the number of epochs */
M, /* a set of i-th edge server m; */

1: R <[] /* loss records of each round */
2: for each r € [0,...,p — 1] do
3. for eachic [0,...,|M]|—1] do

4: 0;, eil < TrainingAndTestModel(0;, A, X;, n)
5: 9 — M Z‘Z(;)loil 91

6: ¢ < TestModel(A, X) /* for the evaluation */
7. for each i € [0,...,|M| — 1] do

8: 0; < 0

9: 'ReRU(f,fo,...,E‘Aﬂ_l)
10: return R

is O(|T| x [V]). In the FedSTGNN case, per each round p,
each edge server m; € M sends its local parameter 6; to the
central cloud and then receives the updated parameter 6 from
the central cloud, so the total network usage is O(2 x [0;| x
|M| x p) such that |§] = |6;]. In other words, the network
usage of the central cloud-only case depends on the data (i.e.,
T and V), while the FedSTGNN’s network usage depends on
the model and the setting of edge computing (i.e., M, 6;, p).

FedSTGNN’s effect on network usage reduction is validated
in a real-world scenario. For the central cloud-only case, the
transmitted data size is calculated from the dataset METR-
LA [4], which is V| = 207, |T| = 34272, and each X,
is 4-byte floating point value; therefore, the total transmitted
size is |V| x |T] x |X; ;| ~ 27MB. On the other hand, for
the FedSTGNN case, the transmitted data size is calculated
from the size of model parameters, which is ASTGCN [6] is
|6;| =~ 50KB, and edge computing settings, which is [M| = 4
and p = 20; therefore the total transmitted size is 2 x |6;] x
|M| x p ~ 8MB, which indicates that FedSTGNN can reduce
network usage compared with those on the central cloud-only
environment.

Additionally, the proposed framework does not depend on
a specific STGNN model as defined in Definition 4. Here, the
model fy, could be replaced with arbitrary ones as presented
in Line 4 of Algorithm 1. This feature could allow models
to be readily tuned and replaced to improve accuracy with
reduced training times.

IV. EVALUATION

In this section, we show our experimental results on the
FedSTGNN framework. We first introduce the experimental
environment, including the dataset, model, and measure. Then,

1871

we show the results of training models varying the use of the
proposed framework. Finally, we analyze the network usage
in the training process.

A. Environment

All experiments are run on a multi-node GPU cluster
consisting of one central cloud node and four single GPU edge
server nodes. All nodes have two Intel Xeon E5-2630v4 (2.20
GHz, each with ten cores and 20 threads), 512 GB of main
memory, 512 GB of SSD, and one NVIDIA GTX 1080Ti. A
1 Gbps Ethernet switch connects all nodes.

For the model fy described in Eq. (5), we use a spatio-
temporal graph neural network named ASTGCN [6], which
repetitively applying of a spatio-temporal neural network
block, consisting of attention and convolutional networks to
handle spatial and temporal information. We use 64 graph
and temporal convolutional kernels, which are the same as
the default settings described in the paper [6].

We select two public datasets of the spatio-temporal graph
G described in Eq. (1); METR-LA and PEMS-BAY [4],
collected by the California Department of Transportation.
Vertices in the dataset are vehicle detectors, and edges are
the distance between vehicle detectors. Each sensor measures
the average speed of passing vehicles over 5 min. METR-LA
has 207 sensors and 34,272 timepoints, while PEMS-BAY has
325 sensors and 52,116 timepoints.

We partition all vertices V of these datasets into V() from
Definition 3, from no partition (M| = 1) to four partitions
(|[M| = 4) using Spectral Clustering as depicted in Fig. 4.
Then, we separate each sensor data X into X () following the
partition of the vertices as shown in Eq. (4). As a result, each
edge server has only A and X,

METR-LA

PEMS-BAY

Fig. 4. Results of sensor partitioning. The vertical axis of all images
is the name of the dataset, and the horizontal axis is the number of
edge servers represented as |M|.

B. Effect of federated learning

We compare the model’s prediction performance between
FedSTGNN-applied and central cloud-only conditions. More
specifically, we conduct our experiment by increasing the num-
ber of edge servers from one to four. The case with one client
represents a central cloud-only environment; we use this value
as a baseline. Otherwise, we use edge servers for two to four
clients and compare them to the baseline. In all experiments,

the number of rounds was set to p = 20, and the number of
epochs was set to n = 5. We measure the performance as Mean
Arctangent Absolute Percentage Error (MAAPE) [13], which
calculates the error of predicted value relative to the actual
value in the percentage. MAAPE is considered as an improved
metric than Mean Absolute Percentage Error (MAPE), which
is the commonly used metric, because it resolves a critical
problem happening in MAPE; if the difference between the
actual and predicted value is enormous, MAPE diverges to
the infinite, while MAAPE converges to near 100%.

Fig. 5 shows the difference in loss depending on the number
of clients. The experimental results show that the loss increases
by about 5.2% in METR-LA and 1.8% in PEMS-BAY for the
FedSTGNN case (|M| = 2,3,4), respectively, compared to
the cloud-only case (M| = 1). In the FedSTGNN condition,
the loss increases slightly as the number of clients is increased.
Even when the number of clients is four, the loss is at most
12.8% in METR-LA and 4.9% in PEMS-BAY, which means
that FedSTGNN has a prediction accuracy of about 87.2% and
95.1%, respectively.

15.0%
- =1
0
12.5% - M=2
_, 10.0% = M|=3
o =
2 7w -4
= 5.0%
. J
2.5%
0.0%

METR-LA

PEMS-BAY
dataset

Fig. 5. MAAPE loss comparison by the number of clients. |M] is
the number of edge servers.

We examine the training process by round. Fig. 6 shows
the validation loss change as the number of rounds increases
during training. In both the central cloud case (|M| = 1) and
the edge server cases (|M| = 2, 3,4), MAAPE loss converges
as the round increases. However, when using the central cloud,
the loss converges relatively stable, while the edge server
converges with more fluctuations.

12.5%
- [/\/v-\,\
- 10.0% J’/‘/\\/N
o
£
4 7.5%

~——

5.0%

6.0%
% 50% - e \,vv,_/\«
o
&) 4.0%
Z
2 3.0%

2.0%

"0 10 20 0 10 20 0 10 20 0 10 20
M|=1 M]=2 [M]=3 M|=4

Fig. 6. Loss tendency by epochs. | M| is the number of edge servers.
The x-axis of each plot is round, and the y-axis is MAAPE.

1872

C. Effect on network usage

We examine the network usage of our framework. We
compare two scenarios: the case using central cloud-only and
the case using FedSTGNN. To measure their impact on the
global network, such as the Internet, we evaluate communica-
tion volume using different criteria for central cloud-only and
FedSTGNN. This distinction is required because exchanging
information between devices is different in the central cloud-
only and edge computing environments, as illustrated in Fig. 1.
We use different criteria in both scenarios to assess meaningful
effects on network congestion. For the central cloud-only
case, we measure network usage between sensors and the
central cloud because sensors directly transmit information.
In contrast, for the edge computing case, we measure network
usage between edge servers and the central cloud. In this
case, sensor data is initially sent to the nearest edge server
(which has negligible impact on the global network), and the
processed data is then delivered from the edge server to the
central cloud via the global network.

Table I presents the average network usage reduction in
training for each round with two datasets. The proposed frame-
work FedSTGNN reduces a significant network traffic (i.e.,
73% and 76% for the METR-LA and PEMS-BAY datasets,
respectively). This reduction is induced by FedSTGNN’s ap-
proach of transmitting only the local model parameters from
edge servers to the central cloud. In contrast, the cloud-only
scenario results in excessive network traffic, because STGNN
processes all slices of X generated at each time t € T*
as depicted in Definition 2 and iterates the same dataset for
several epochs 7.

TABLE I
AVERAGE NETWORK USAGE REDUCTION IN TRAINING PER ROUND.

Dataset ‘ Central cloud-only FedSTGNN (|[M] = 4) ‘ Reduction rate
METR-LA 27.06 MB 7.24 MB 73.3%
PEMS-BAY 64.61 MB 15.16 MB 76.5%

V. CONCLUSION

We propose FedSTGNN, a federated learning framework
for spatio-temporal graph neural networks. We define the
concept of STGNN based on matrices and extend it to support
federated learning, enabling federated learning to arbitrary
STGNN models. We employ a real-world traffic sensor dataset
and an existing STGNN model for the evaluation and divide
the sensors into adjacent groups to construct the experimental
environment of edge computing. Through the experimental
evaluation, we demonstrate that FedSTGNN shows only a
modest performance degradation of 1.8% to 5.2% compared
to the central cloud version model, which can be considered
to preserve the original performance. Furthermore, FedST-
GNN exhibits stable loss traces that converge to specific loss
values as the synchronization rounds progress. Notably, our
framework significantly reduces overall network traffic usage
by up to 76.5%, and it demonstrates its suitability for edge
computing environments.

ACKNOWLEDGMENT

This research was supported by the MSIT(Ministry of
Science and ICT), Korea, under the ITRC(Information Tech-
nology Research Center) support program(IITP-2024-2020-
0-01795) supervised by the IITP(Institute of Information &
Communications Technology Planning & Evaluation).

REFERENCES

[1] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman, “Bringing the cloud
to the edge,” in 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pp. 346351, 1IEEE, 2014.

[2] M. Satyanarayanan, “The emergence of edge computing,” Computer,
vol. 50, no. 1, pp. 30-39, 2017.

[3] L. Liu, J. Zhang, S. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in ICC 2020-2020 IEEE international
conference on communications (ICC), pp. 1-6, IEEE, 2020.

[4] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent
neural network: Data-driven traffic forecasting,” 2018.

[5] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” in Proceed-
ings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI-18, pp. 3634-3640, International Joint Conferences
on Artificial Intelligence Organization, 7 2018.

[6] S. Guo, Y. Lin, N. Feng, C. Song, and H. Wan, “Attention based spatial-
temporal graph convolutional networks for traffic flow forecasting,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 33,
pp. 922-929, 2019.

[71 Z. Wu, S. Pan, G. Long, J. Jiang, and C. Zhang, “Graph wavenet for deep
spatial-temporal graph modeling,” arXiv preprint arXiv:1906.00121,
2019.

[8] L. Hillman, “The rolling window method: Precisions of financial
forecasting,” Dissertation, 2017.

[9] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,” in
International Conference on Machine Learning, pp. 4615-4625, PMLR,
2019.

[10] Y. Diao, Q. Li, and B. He, “Towards addressing label skews in one-
shot federated learning,” in The Eleventh International Conference on
Learning Representations, 2022.

[11] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429-450, 2020.

[12] C. Thapa, P. C. M. Arachchige, S. Camtepe, and L. Sun, “Splitfed: When
federated learning meets split learning,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 36, pp. 8485-8493, 2022.

[13] S. Kim and H. Kim, “A new metric of absolute percentage error for
intermittent demand forecasts,” International Journal of Forecasting,
vol. 32, no. 3, pp. 669-679, 2016.

1873

