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Abstract—In this research, we present a cascaded deep learning
(DL) model to identify multiple drone radio frequency (RF)
signals, leveraging the latest developments in DL technology. The
model consists of a bi-directional long short-term memory (Bi-
LSTM) model and a 1D-CNN. In this simulation experiment,
the DroneRC dataset is employed. The raw RF data is initially
preprocessed using the short-time Fourier transform and the
power spectral density technique to identify the most relevant
properties before being utilized to train the DL model. The
simulation results demonstrate that the proposed DL model
exhibits a low error rate and excellent classification accuracy.

Index Terms—cascaded DL model, drone detection, RF signal
classification, power spectral density

I. INTRODUCTION

Unmanned aerial vehicles (UAVs), sometimes known as
UAVs, have attracted a lot of interest lately. UAVs may be
flown from kilometers away without a pilot present by using a
remote controller. UAVs are valuable tools for several sectors,
and they are being employed for many applications outside the
military at the moment. For example, authorities use UAVs for
environmental monitoring [1], remote sensing [2], and disaster
prevention [3]. Privacy and safety issues are brought up by
the growing usage of UAVs [4]. According to [5], the use
of UAVs for terrorist attacks and unauthorized monitoring is
the most worrying problem. To prevent the aforementioned
occurrences, anti-UAV technology that can recognize, catego-
rize, and destroy unauthorized UAVs gathering data using a
variety of sensors is required [6].
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Deep learning (DL) techniques for UAV detection have
gained the most significant attention in the scientific com-
munity. Several research works have looked at how to rec-
ognize UAVs using DL algorithms and a variety of modern
technologies, including RF, thermal imaging, audio, video,
and radar [7]. Since it can identify objects over significant
distances and communicate across non-line of sight, radio
frequency (RF)-based technology has drawn the most interest
among all other technologies. As of right now, a lot of
research has been done on the detection and classification of
UAVs utilizing RF technology [8]–[12]. [8] presented a DL
method based on RF to classify multiple UAVs. To achieve the
detection and classification objectives, a supervised DL system
was suggested by the authors. To prepare the RF signals,
they employed the short-term Fourier transform (STFT). A
significant contributing aspect to the enhanced efficiency of
their technique was the first STFT data preparation in this
investigation. The authors of [9] presented RF-UAVNet, a
convolutional NN designed for UAV tracking systems that use
RF signals to recognize and categorize UAVs.RF-based UAV
identification and detection was investigated in [5]. To extract
features, they employed the continuous wavelet transform and
the wavelet scattering transform. They used principal com-
ponent analysis in conjunction with many machine learning
models, including SVM, kNN, and ensemble to complete
classification and detection tasks with various levels of noise.

In this work, we have addressed a UAV detection and
classification problem utilizing RF signal analysis based on a
novel cascaded DL model called the CNN-BiLSTM to classify
UAVs. The simulation study makes use of the DroneRC
dataset. The raw RF data is initially preprocessed using the
STFT and the power spectral density (PSD) technique to
identify the most relevant properties before being utilized to
train the DL model. The results of the simulation demonstrate
that the suggested model offers low error rates and excellent
classification accuracy.
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Fig. 1. The architecture of proposed RF-based UAV detection system.

Fig. 2. The architecture of proposed cascaded CNN-BiLSTM model with
different layers interconnection.

II. DATASETS DESCRIPTION

This work uses the DroneRC dataset [13], a publicly acces-
sible dataset that includes radio frequency (RF) signals from
drone remote controllers (RCs) of various brands and types.
A low-noise power amplifier, a directional grid antenna, and a
high-frequency oscilloscope make up a passive RF surveillance
system that records and intercepts the radio frequencies that
the drone RCs send out to communicate with the drones. The
drones were not moving while the data was being collected.
The 2.4 GHz band is used by all drone remote controls to send
signals. There are around 1000 worth of RF signals in each 17
drone RC, each lasting 0.25 milliseconds, and the drones are
made by eight different manufacturers. Approximately 1000
RF signals in.mat format from the RCs datasets.Among them,
we have used four drone datasets with different models for this
study, such as the DJI (5) datasets for Inspire 1 Pro, Matrice
100, Matrice 600, and Phantom 3.

III. METHODOLOGY

The experimental configuration Fig. 1 displays the drone
RC RF data recording arrangement. When it detects drone
signals, a passive RF surveillance gadget records them. The
setup consists of a Keysight MSOS604A oscilloscope with a
6 GHz bandwidth and a maximum sampling frequency of 20
GSa/s, a low-noise amplifier working in the 2–2.6 GHz range,
and a 2.4 GHz 24dBi grid parabolic antenna. At distances
ranging from 1 to 5 meters, RF signals were recorded in
an indoor laboratory setting between the drone RC and the
receiving antenna.

In this experiment, we have generated 500 signals with a
128 × 128 dimension size associated with each drone. Next,
we propose an approach based on the energy-time-frequency
domain. We employ the spectrogram approach to depict the
RF signals in the energy-time-frequency domain. Generally

speaking, the discrete-time STFT squared magnitude may be
used to compute the spectrogram’s signal as follows:

Spectrogram(n, ω) =

∣∣∣∣∣
∞∑

n=−∞
y[m]w[n−m]e−jωn

∣∣∣∣∣
2

, (1)

where w[n] is a sliding window function that acts as a
filter, y[n] is the collected signal, ω is the frequency, and
m is discrete-time. Furthermore, the spectrogram analysis of
the recorded radio frequency data may reveal the signal’s
broadcast frequency as well as its frequency hopping patterns.
The PDSs of the signals are computed using the periodogram
technique to produce spectrogram images. Using this method,
the time-domain signal y[i] from a UAV is divided into suc-
cessive blocks, and then each block’s periodogram is created
and averaged to estimate the PDS, i.e.,

yg[i] = w[i]y[i+ gR], (2)

where G is the window dimension and i = 0, 1, ..., G − 1
defines the sample index. The window function represents
w[i], g = 0, 1....K − 1 is the window index, K is the
total number of blocks, and R is the window’s hop size,
which modifies how much one window overlaps another. The
periodogram of a block is then calculated as follows:

Pyg [i], G(wk) =
1

G
|FFTN,k(yg)|2 =

1

G

∣∣∣∣∣
N−1∑
i=0

yg[i]e
−2jπik/N

∣∣∣∣∣
2

(3)

Consequently, the PSD is calculated using the following
formula:

PSD =
1

K

K−1∑
g=0

Pyg [i], G(wk) (4)

In this case, the Hanning window is used to construct peri-
odograms.

CNN and other DL algorithms are highly effective in
applications involving image recognition and classification.
CNNs are made up of layers, much like other NNs. Con-
volution layers are used to apply many filters to an image to
extract features, independent of the location of those features
within the image, in contrast to other DL. CNN performs
effectively when dealing with 2D input.In comparison to other
DNNs, it also needs less weight per neuron, which reduces
processing complexity. Additionally, the BiLSTM network is
a potent DL component that can learn the input characteristics
in a two-directional fashion for the categorization of time
series data. As a result, the proposed cascaded CNN-BiLSTM
model gains strength and the classification task’s accuracy
rises. The proposed cacased DL model is shown in Fig. 2.
Spectrophotograms of RF signals were utilized in this work
as inputs for the CNN model and the output of CNN is fed to
the BiLSTM network for further processing. The extracted RF
features are trained using the proposed model with a minibatch
size of 32 and a total epoch of 100. The entire dataset is
divided into two subsets, with the training set accounting for
80% and the validation set for 20%, respectively. The test data
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Fig. 3. (a) and (b) Training and validation accuracy versus loss for 10 classes of drone; (c) Confusion matrix results for 10 classes of drone; (d) Precision
versus recall graph for 10 classes of drone.

is fed into a trained model for signal type categorization during
the testing phase.

IV. SIMULATION RESULTS

The model in the suggested system is trained using Python
and the TensorFlow platform, while the datasets are created
and preprocessed in the MATLAB R2022b environment. The
suggested system application was run on a PC equipped with
a 12th Gen Intel(R) Core(TM) i7-12700 2.10 GHz CPU and
an Nvidia RTX3060 graphics processor unit. The performance
of the suggested models is assessed by contrasting the real and
anticipated values. In addition, we calculate values for false
negatives (FN), true negatives (TN), true positives (TP), and
false positives (FP). The formula is then used to determine the
recall, accuracy, and precision as follows:

Accuracy =
TP + TN

(TP + FN + FP + TN)
(5)

Precision =
TP

(TP + FP )
(6)

Recall =
TP

(TP + FN)
(7)

The effectiveness of the suggested model is assessed for
10 drone classes using a confusion matrix, precision, and
recall analysis. We have illustrated the training and validation
accuracy and loss to evaluate the performance of the suggested
model with these 10 classes. Figures 3 (a) and (b) show the
accuracy and loss for training and validation, respectively.
As can be observed from Figures 3 (a) and (b), the model
completes 100 epochs and achieves a validation accuracy of
95.30%, accompanied by a corresponding reduction in loss.
These results demonstrate the success of the suggested model
in learning from the proposed drone datasets.

The results of the confusion matrix for the situations
with 10 classes are displayed in Fig. 3 (c). It can be
observed from Fig. 3 (c) that, for the 10 drone classes, such
as DJI Inspire1Pro, DJI Matrice100, DJI Matrice600 1,
DJI Phantom3, DJI Phantom4Pro 1, DJI Phantom4Pro 2,
DJI Matrice600 2, FlySky FST6, Spektrum DX5e, and
Spektrum DX6e, the true and prediction values of the
proposed model for the majority of classes are over 95%.
However, the classification rates for several classes, such
DJI Matrice600 1, DJI Phantom3, DJI Phantom4Pro 2,
and DJI Matrice600 2, were 92%, 86%, 87%, and 93%,
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respectively. This indicates that there is no significant
inaccuracy when considering the overall accuracy rate.

To determine the precision and recall values for ten classes
of drone signals, we ran simulations as shown in Fig. 3
(d). The overall precision-recall accuracy of the suggested
model produced encouraging results for the scenario involv-
ing ten classes of drones. The following DJI drones at-
tained accuracies of 97%, 94%, 96%, and 97% respectively:
DJI Matrice600 1, DJI Phantom3, DJI Phantom4Pro 2, and
DJI Matrice600 2. The accuracy of the remaining classes was
100%. These findings demonstrate that the proposed model
can predict drone signal classification with a high degree of
accuracy and a low likelihood of errors.

V. CONCLUSION

In this paper, we propose an RF signal-based cascaded DL-
assisted UAV detection and classification system. The config-
uration of the proposed model utilizes two DL models: CNN
and BiLSTM. Compared to the state-of-the-art, the suggested
model enhances detection and classification performance. This
simulation study uses the DroneRC dataset. The raw RF data
is initially preprocessed using the STFT and PSD techniques
to identify the most relevant features before being used to train
ML models. The results demonstrate that the suggested model
has a low error rate and excellent classification accuracy.
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