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Abstract—In this research, we investigate the application of
Convolutional Neural Networks (CNN) utilizing deep learning
methodologies to actively predict and cancel noise generated
by UAV propellers. Our approach involves extracting features
from spectrograms and waveform data to train a CNN model
capable of predicting and generating counteractive noise signals
for effective propeller noise cancellation. A comprehensive as-
sessment of the proposed model was conducted, resulting in an
accuracy of 94.5%, a precision of 93.3%, and a recall of 96.1%.
Simulated testing in various scenarios showed promising results,
demonstrating the model’s capability in reducing drone propeller
noise effectively. Furthermore, the model’s performance re-
mained robust under various simulated environmental conditions,
indicating its potential for real-world applications. This research
paves the way for more sophisticated noise reduction systems in
UAVs, contributing to quieter and more environmentally friendly
operations.

Index Terms—Deep Learning, Unmanned Aerial Vehicles
(UAVs), Adaptive ANC, Neural Network (NN), Real-time Noise
Mapping.

I. INTRODUCTION

Integration of Active Noise Cancellation (ANC) techniques
in Unmanned Aerial Vehicles (UAVs) marks a significant
advancement in aeronautical engineering, addressing the crit-
ical challenge of noise mitigation. As UAVs have become
increasingly prevalent in diverse applications—ranging from
agriculture and disaster management to environmental mon-
itoring, surveillance, delivery, and reconnaissance—the need
to minimize their acoustic footprint has become paramount
[1]. ANC techniques can tackle the pervasive issues of noise
pollution associated with UAVs by employing sophisticated
algorithms and sensor arrays to detect and counteract the noise
generated by propulsion systems and aerodynamic forces. By
emitting anti-noise signals that are precisely out of phase with
ambient noise, ANC effectively reduces the overall acoustic
signature of Unmanned Aerial Vehicles. This not only en-
hances operational stealth but also mitigates environmental
impact. The implementation of ANC in UAVs represents a
transformative step towards the harmonious integration of
unmanned aerial systems in populated or noise-sensitive areas,
signifying a major breakthrough in aerospace engineering and
facilitating the responsible and widespread adoption of UAV
technology in everyday life. ANC operates on the principle

2077

2" Soo Young Shin
IT Convergence and Engineering
Kumoh National Institute of Technology
Gumi-si, South Korea
wdragon @kumoh.ac.kr

Primary Noise Waveform
+
Antinoise Waveform

\VAV/

Fig. 1. Active Noise Cancellation Concept.

Residual Noise

—_——

of “destructive interference.” This technique generates a sec-
ondary sound signal, known as anti-noise, which is equal in
magnitude but 180° out of phase with the primary noise. The
superposition of these primary and secondary sound signals
results in residual noise, with an amplitude significantly lower
than that of the primary noise [2]. The effectiveness of active
noise canceling depends on the precision with which the anti-
noise is generated, matching the primary noise in magnitude
and phase opposition. Fig. 1 illustrates the basic concept of
ANC, showing the interaction between the primary noise and
the generated anti-noise to achieve residual noise.

The application of Active Noise Cancellation (ANC) in Un-
manned Aerial Vehicles (UAVs) becomes particularly effective
and promising when combined with Deep Learning models
approach [2]. Traditional ANC systems analyze incoming
noise signals and generate corresponding anti-noise in real-
time. Deep neural networks, trained on extensive datasets of
UAV noise signatures, can swiftly identify and predict noise
patterns during UAV operation. These neural networks extract
various features from the UAV propeller noise, which are
leveraged to enhance the system’s predictive capability. Utiliz-
ing these extracted features, the ANC system can proactively
generate anti-noise signals tailored to specific noise sources
encountered during flight [3]. This dynamic adaptation enables
more precise and efficient noise cancellation, even in complex
and variable environments. Integrating deep learning into ANC
for UAVs not only improves noise prediction accuracy but also
allows the system to continuously learn and adapt from new
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data [4]. This innovative approach to noise mitigation paves
the way for quieter, more efficient UAV operations, fostering a
future where UAVs can operate seamlessly and unobtrusively
in diverse settings.

II. METHODOLOGY

Deep Learning models are increasingly recognized as an
effective method for analyzing and addressing complex noise
cancellation tasks, particularly in scenarios involving propeller
noise reduction. Propeller noise, known for its distinctive
spectral patterns and time-varying characteristics, presents
challenges that traditional signal processing methods struggle
to effectively address. To combat propeller noise, CNNs utilize
time-frequency representations, such as spectrograms derived
from audio recordings. Each spectrogram frame serves as input
to the CNN model. Typically, the CNN architecture consists of
multiple convolutional and pooling layers designed for feature
extraction and dimensionality reduction. Deeper layers within
the network are responsible for learning intricate noise patterns
and relationships, ultimately leading to fully connected layers
that generate noise cancellation signals based on acquired
features.

A CNN model designed for active noise cancellation (ANC)
leverages its inherent ability to learn hierarchical representa-
tions of audio signals. This allows the model to effectively
extract important features such as amplitude, frequency spec-
trum, and phase information. Initially, the raw audio signal
undergoes pre-processing to prepare it for input into the CNN.
This typically involves converting the audio waveform into
a spectrogram representation, which captures both temporal
and frequency domain information. The spectrogram is a 2D
matrix where one axis represents time, the other axis repre-
sents frequency, and the magnitude of each point in the matrix
corresponds to the signal strength at that time-frequency point
[5]. Within the CNN architecture, the convolutional layers
serve as feature extractors. These layers apply a set of learn-
able filters (kernels) across the input spectrogram, performing
convolutions to extract localized patterns and features. By
convolving these filters over the spectrogram, the CNN learns
to identify meaningful features at different scales, including
variations in amplitude, frequency content, and phase char-
acteristics. The subsequent pooling layers downsample the
feature maps, reducing spatial dimensions while preserving
important features [6].

The learned features from the convolutional layers are
then passed to fully connected layers, which integrate the
extracted features into a higher-level representation suitable
for decision-making. In the case of Active Noise Cancellation
(ANC), the CNN learns to map the extracted audio features to
an appropriate anti-noise signal. The CNN figures out how
to create an anti-noise signal that can be combined with
the original propeller noise to reduce the overall sound. By
combining the original propeller noise with the anti-noise
signal, the total noise level is reduced. This learned mapping
effectively captures the relationship between the input audio
features and the desired output, which is a significantly quieter

audio signal. During the deep learning model training process,
the CNN is optimized to minimize the difference between the
predicted output (cancellation signal) and the primary audio
signal (propeller sound). This optimization allows the CNN to
learn how to cancel out specific characteristics encoded in the
input features [7], leading to effective noise cancellation. Reg-
ularization techniques and extensive training of the datasets
contribute to the model’s improved capacity to generalize
to unfamiliar audio signals and various types of noise. This
ensures that the Deep Learning model can successfully reduce
noise in new and different audio scenarios.

A. Proposed Model

The proposed Deep Learning-based approach for Active
Noise Cancellation incorporates a convolutional neural net-
work (CNN) to extract features from the UAV propeller noise
Fig. 2. The CNN is integral to the model, allowing for
precise noise pattern recognition and prediction. The model
begins by extracting features from the received propeller audio
signals X, including time-domain features (Xine), frequency-
domain features (Xfrq), time-frequency domain features (X),
and temporal characteristics (Xemp). After feature extraction,
inverse values for all the features are generated which are later
used to generate an anti-noise signal for the primary sound.
These features are processed through multiple convolutional
and pooling layers within the CNN to learn intricate noise
patterns [8]. The fully connected layers then integrate these
features into a high-level representation suitable for generating
an anti-noise signal.

During the training phase, the model parameters W and
£ are optimized to minimize the difference between the
combined audio (original propeller noise X plus the anti-noise
signal H) for the target quieter sound, using backpropagation
and optimization techniques. The optimization process can be
summarized as minimizing the cost function L(Y,Y’), where
Y is the target output and Y is the predicted output. Once
trained, the model can extract features from new real-time
audios X' and then generate its anti-noise signal H which
is then combined with the primary audio signal to produce
the final output Output = SIGN(X’ + H). This dynamic
and adaptive approach ensures precise and efficient noise
cancellation, enhancing operational stealth and reducing the
environmental impact of UAVs [9]. The detailed algorithm
mentioned is the sections below, captures the step-by-step
process of training and predicting with the proposed model,
highlighting the systematic feature extraction and integration
that underpin the deep learning-driven ANC.

B. Algorithm

As seen from Algorithm: 1, the process initiates with a
training phase where a diverse set of features is extracted from
the input audio signals. These features include characteristics
from the time domain (such as amplitude and zero-crossing
rate), attributes from the frequency domain (like spectral cen-
troid and Mel-Frequency Cepstral Coefficients (MFCCs)), and
properties from the time-frequency domain (including pitch
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Fig. 2. Proposed Deep Learning model for Active Noise Cancellation of UAV propeller Noise

and phase). The deep learning model is defined and initialized
with random weights and parameters, and it undergoes iterative
training. During this training, the model learns to generate
inverse feature values in response to primary sound features.
The model also learns the complex patterns of propeller noise
through backpropagation and optimization techniques. In the
prediction phase, the trained model extracts features from new
input audio signals. It then generates an anti-noise signal
specifically designed to counteract the identified propeller
noise. By merging this anti-noise signal with the original
audio signal, the algorithm achieves effective noise cancel-
lation, substantially reducing the propeller noise. This method
exemplifies a sophisticated approach to ANC, leveraging the
power of deep learning to adaptively and efficiently suppress
propeller sound in real-time scenarios.

C. Spectrogram Visualization

The input audio signal z(t) is transformed into a time-
frequency representation using the Short-Time Fourier Trans-
form (STFT):

X(t,w) = STFT{z(1)}(t,w) = / (r)w(r — e dr
(1)

where X(t,w) represents the spectrogram, w is the frequency,
t is time, x(7) is the audio signal, and w(7-f) is a window
function.

D. Convolutional Layer Operation and Feature Extraction

The convolution operation is applied to the input spectro-
gram given by X(f,w) and using the set of learnable filters
h(t,w). The output feature map F(¢',w’) after convolution and
activation is calculated as,

F(t,)=0 (qu,wm <t',w’>>

whereas, o is the activation function such as ReLU, ¢’ and «’
are the indices of the output feature map. The convolutional
layers are trained to identify particular characteristics such as
edges, frequency patterns, and temporal correlations within
the spectrogram. Every filter A(t',w’) is designed to detect
and eliminate specific features that are important for noise
detection and cancellation.

2)

E. Pooling layer Downsampling

The max-pooling operation downsamples the feature maps
[10] to reduce spatial dimensions while preserving important
features. P (t”,w”) denotes the pooled feature map which is
given as:

= max
(t",w’)€ pooling region

P " w") F W) (3)

F. Fully Connected Layers

The flattened and pooled feature maps are then passed
through fully connected layers (dense layers) to learn high-

Algorithm 1 Active Noise Cancellation with Deep Learning

Require: Audio signals X (training set), Y (labels for train-
ing), X’ (new input signals for prediction)
Ensure: Trained model parameters W, 5 and noise-cancelled
output
1: TRAIN(X,Y)
2: Extract features from input audio signals X
3 Xiime < time-domain features from X
4 Xireq < frequency-domain features from X
5. Xy < time-frequency domain features from X
6:  Xiemp < temporal characteristics from X
7: Define and initialize the deep learning model
8 W < initialize weights randomly
9:  f3 < initialize model parameters
: Generate inverse feature values
: Train the model using X and Y
Update (3 using backpropagation and optimization
: return W, 3
: PREDICT(X")
. Extract features from new input audio signals X'

16: X/, < time-domain features from X’

17: Xfeq ¢ frequency-domain features from X'

18: X[ < time-frequency domain features from X’
19: Ximp ¢ temporal characteristics from X'

20: Generate anti-noise signal using trained model

21:  H + model(X’, W, 3)

22: Combine primary audio signal with anti-noise signal
23:  Output < SIGN(X' + H)

24: return Output
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Fig. 3. Primary audio waveform of propeller sound and its Anti-Noise
waveform.

level representations:

y = softmax (W(L) ...ReLU (W(l)x + b(1)> RS b(L)>
4)

where W and b() are the weights and biases of layer /, and
ReLU denotes the rectified linear unit activation.

G. Generating Anti-Noise Sound Signal

The output, y, represents the predicted cancellation signal.
During training, the CNN model for ANC learns to minimize
the loss, L, between y and the primary audio signal of the
propeller sound:

N
(yz’ - xclean,i)Q (5)
=1

L = MSE (ya xclean) =

2=

To achieve controlled residual sound, a secondary sound
waveform must be generated to counteract the primary sound
waveform, as illustrated in Fig. 3. This secondary waveform
should be out of phase with the primary sound, typically
achieving a 180° phase inversion. This requires generating an
inverse version of the primary sound signal so that when the
primary and anti-noise signals are combined, phase elimination
occurs. As mentioned earlier, anti-noise operates using the
principle of destructive interference, which means that when
sound waves with opposite phases combine, a phase shift
occurs, resulting in the mitigation of the sound signal. This
phenomenon is further explained below, using a digital signal
as an example.

s[n] = (A x sin 27 fr, At + ¢)) ... (6)
whereas, s[n] audio signal value at nth sample, At shows
the total time taken between consecutive audio samples and

Fn is the audio signal frequency in Hz. Since an inverse phase
signal is needed it is given by:

s[n] = — (A x sin (27 f,At + ¢)) ... (7)

Data Collection | Setup for Audio - SUA‘a PR'l.':pel(lhg;
Plan - Recording #| Sound Recordmg
Samples
Y
|Feature Extraction|

I (Phase, » Audio Pre-

Dataset CSVFile € Amplitude, - processing
Frequency)

Fig. 4. Flowchart for UAV Propeller Audio Data Collection Process.

IIT1. EXPERIMENT

To validate the effectiveness of our model, we conducted
comprehensive simulations and tests across various conditions
to ensure it met the desired performance metrics. The fol-
lowing subsections will provide detailed discussions on the
preparation and preprocessing of the dataset, the training and
testing of the Deep Learning model, and the simulation results.

A. Dataset Collection

The first crucial step in this research was establishing an
extensive dataset by recording various sounds produced by
UAV propellers, as well as acquiring propeller sounds from
other sources. This dataset of over 1800 audio recordings
served as the foundation for training and evaluating the deep
learning models. The primary objective was to ensure the
models’ effectiveness in accurately identifying and eliminating
UAV propeller noise from audio recordings. The process of
collecting audio features from the recordings in the dataset is
detailed in Fig. 4. The dataset included a range of features such
as frequency, pitch, phase, amplitude envelope, and temporal
characteristics. This was accomplished by writing a script to
extract feature data from audio files, which were then used to
generate a CSV file, as illustrated in Fig. 4.

B. Model Training

The deep learning model utilized in this study for active
noise cancellation (ANC) was meticulously trained on an
extensive dataset of UAV propeller sounds collected from
diverse environments, including various altitudes and UAV
speeds. Each audio sample was transformed into spectrogram
representations using a frame size of 2048 and a hop length
of 512, capturing detailed frequency and time-domain infor-
mation essential for effective noise cancellation.

The CNN architecture comprised multiple convolutional
layers, each followed by max-pooling layers for efficient
feature extraction. The convolutional layers applied filters to
capture spatial patterns within the spectrograms, leveraging
cross-correlation for robust feature extraction. Rectified Linear
Unit (ReLU) activation functions were incorporated after each
convolutional and fully connected layer to introduce non-
linearity, enhancing the model’s ability to learn complex
patterns. The deeper layers of the CNN were tasked with
learning intricate wave patterns, while the fully connected
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Fig. 6. Spectrogram Analysis for UAV Propeller Noise.

layers generated noise cancellation signals based on the ex-
tracted features. The final layer of the CNN employed a linear
activation function to produce noise cancellation signal.
During the training process, mean squared error (MSE) was
utilized as the loss function to minimize the disparity between
the predicted noise-canceled spectrogram and the primary
audio spectrogram. The Adam optimizer was employed with
a learning rate of 0.001, facilitating efficient convergence. The
training was conducted over 50 epochs with a batch size of
32 and a sampling rate of 22050 Hz. To prevent overfitting
and ensure generalization across various noise scenarios, early
stopping was implemented based on validation loss given by:

N
. 1 2
MSE (Loss Function) = N Zl (yi — ¥i) )

whereas, N denotes number of training samples used, y;
represents the actual target (primary audio) for the i sample

and g, is the predicted output (ANC signal) for the i sample.
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C. Evaluation

In this section, we will assess the performance of our
proposed deep learning model designed for active noise can-
cellation of UAV propeller noise. Noise is generated around
UAV propellers due to the turbulent airflow and rapid pressure
changes that occur during UAV operations Fig. 5. During the
evaluation, we comprehensively analyzed several parameters,
including amplitude and phase spectrograms, accuracy, pre-
cision, recall, and F1-score. Upon receiving the audio input,
the Deep-ANC model analyzes various features in real-time.
Utilizing the data from these extracted features, an inverse au-
dio signal is generated to counteract the actual UAV propeller
noise. After a few iterations, the model also predicts upcoming
variations in the propeller sound. The model incorporates three
essential wave plots that depict significant aspects of UAV
propeller noise analysis Fig. 6. The phase spectrogram wave
plot showcases the temporal progression of phase character-
istics across different frequency bands, offering insights into
the fluctuation of the propeller noise phase over time. This
information is utilized to generate an inverse phase, which is
180° out of phase with the original sound. The amplitude spec-
trogram wave plot emphasizes the distribution of noise ampli-
tudes, crucial for understanding the frequency components and
variations in the intensity of the propeller noise. Finally, the
pitch (fundamental frequency) plot visually captures changes
in the dominant frequency of the noise signal, aiding in the
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identification of fundamental pitch patterns. Together, these
wave plots provide a comprehensive overview of the acoustic
characteristics of UAV propeller noise, enabling informed
analysis and subsequent noise cancellation strategies using our
CNN-based deep learning model. The system extracted various
features from primary audio with their respective value ranges.
The proposed model effectively generates precise anti-noise
signals that counter the UAV propeller noise as a result of the
destructive interference phenomenon, resulting in significantly
quieter operation. The proposed Deep Learning-ANC model
achieved impressive performance metrics, with an accuracy of
94.5%, precision of 93.2%, recall of 96.1%, and an F1 score
of 94.6%. Fig. 7 illustrates the performance of the Deep-ANC
model in predicting UAV noise. The model maintains high
precision across a wide range of recall values, demonstrating
effective noise prediction and cancellation capabilities with a
trade-off between precision and recall as the recall increases.
Additionally, the model demonstrated a low loss value of
0.115, indicating its effectiveness in accurately identifying and
canceling UAV propeller noise. Fig. 8 shows the comparison
between the original UAV sound (before) and the audio after
applying our CNN-based deep learning model. The results
demonstrate that our model significantly reduces the propeller
noise to a minimal level.

IV. CONCLUSION

Unmanned Aerial Vehicles (UAVs) are increasingly being
utilized across various fields, including agriculture, surveil-
lance, delivery services, and environmental monitoring. How-
ever, to make them more acceptable and noise-less in urban
and sensitive environments, it is crucial to address the issue
of noise generated by their propellers. This study proposed a
deep learning-based CNN model for active noise cancellation
of UAV propeller noise. The proposed model is able to predict
the upcoming UAV propeller noise, allowing it to effectively
anticipate and counteract noise disturbances. It has proven
to be highly effective in reducing UAV propeller noise by
leveraging the power of CNN. The model underwent rigorous
training, testing, and validation processes, yielding impressive
performance metrics: an accuracy of 94.5%, precision of
93.2%, and recall of 96.1%. The proposed model achieved
remarkable noise reduction results, validated across various
flight scenarios. This study underscores the potential of deep
learning approaches in addressing complex noise challenges in
UAV operations, providing a promising avenue for future noise
mitigation strategies. Future work will focus on enhancing the
system’s efficiency, hardware implementation, and analyzing
numerous noise scenarios during UAV flights. Practical im-
plementation in diverse environments and conditions will be
key performance indicators (KPIs) for evaluating the system’s
robustness and adaptability. By expanding the scope of scenar-
ios and refining the ANC model, we aim to further improve
noise cancellation effectiveness and operational efficiency in
real-world applications to achieve quieter operations.
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