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Abstract—Detecting defects on steel surfaces is crucial for
maintaining production standards and minimizing material
waste. However, the scarcity of defect images poses a signif-
icant challenge in developing robust detection models, which
hampers effective defect inspection. To address this issue, we
propose DefectGen, a novel data augmentation approach that
leverages Stable Diffusion and blending techniques to enhance
defect datasets and improve detection performance. With only a
limited number of defect images, our method aims to generate a
larger and more realistic defect image dataset. The defect image
generation process is structured into two stages: the Defect-Free
Stage and the Defect Generation Stage. In the Defect-Free Stage,
Stable Diffusion is trained on a defect-free dataset to generate
realistic steel surface images. The Defect Generation Stage is
divided into two phases: defect extraction and modification,
followed by blending. In the first phase, defects are extracted
from a small number of defect images and modified according
to specified conditions. The second phase involves deep blending
of the modified defects into the generated defect-free images
based on the provided locations, resulting in realistic defect
images.Experiments on our steel surface dataset demonstrate the
effectiveness of DefectGen, leading to a 11.91% improvement in
Mean Average Precision (mAP) for defect detection.

Index Terms—Generative AI, Stable Diffusion, Few-Shot
Learning, Defect generation, Defect detection

I. INTRODUCTION

The fast growth of artificial intelligence in recent years
has led to many creative advancements in different sectors,
with a notable impact on real-world industrial uses. Due to its
convenient framework, supervised learning is widely used in
creating vision models for tasks like object detection [5], [11],
[23] and segmentation [22] in industrial settings. Even though
the supervised method is effective, it encounters a major
obstacle: obtaining large quantities of accurately annotated
data can be difficult and require significant resources [24].
For instance, gathering datasets with defective images presents
a challenge since engineers focus on refining processes to
reduce the occurrence of defects. Additionally, generating
high-quality annotations is both expensive and often requires
specific skills. It is essential to tackle and minimize the
reliance on large amounts of data and annotations needed to
train supervised models in order to enhance the incorporation
of AI in industrial settings and improve its accessibility.

To address the challenge of limited data, researchers have
explored various strategies. For instance, DeVries and Taylor
(2017) attempted to artificially create defective images by
manually introducing artifacts. Similarly, Li et al. (2021)
employed techniques such as cutting and pasting patches
from defect-free images or transferring defect regions from
one image to another. However, these methods often resulted
in images that lacked realism and diversity. The advent of
generative AI represents a transformative advancement in this
field, offering the ability to produce highly realistic and varied
defective images. In recent years, text-to-image generative
models have displayed impressive progress, demonstrating
their capacity to create high-quality images based on text
descriptions. These models have been trained on large image
datasets, enabling them to produce samples with significant
fidelity and diversity. An example worth mentioning is Stable
Diffusion, a publicly available model that has enabled a variety
of powerful uses because of its effectiveness and flexibil-
ity. To further enhance image generation, researchers have
explored various techniques to integrate key elements from
reference images into diffusion models, thereby improving
content precision when working with a limited set of images
[1], [2], [4], [6], [20]. Chen et al. [1] pioneered a complete
parameter adaptation approach, which involves modifying the
entire diffusion model to better align with the reference
images. Han et al. [6] proposed a method that uses SVG
decomposition with a small set of trainable parameters to
prevent catastrophic forgetting in scenarios with few reference
images. This approach helps the model align more accurately
with reference images while reducing the risk of overfitting.
Additionally, Chen and colleagues [2] developed an image-
conditioned adapter that retains essential characteristics from
the reference images without requiring optimization of the
network parameters.

However, these approaches still require a substantial number
of images to effectively train the model for generating new
images [13], [18], [25], [27]. In industrial settings, for instance,
developing a large dataset of defect images is both challenging
and costly. To address this issue, some studies [3], [10],
[12], [15] have explored zero-shot and few-shot techniques
for defect generation, but these methods still fall short of
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addressing the data insufficiency problem in real-world sce-
narios. Wang et al. (2020), Zhao, Cong, and Carin (2020), and
Robb et al. (2020) have investigated few-shot image generation
by leveraging pretrained models that can adapt from large
domains to smaller ones. However, these approaches primarily
focus on transferring entire images rather than emphasizing
critical defect regions. Addressing the unique distribution of
defects and defect-free areas individually could enhance defect
generation methods.

In line with this, our study introduces, DefectGen, a few-
shot defect image generation approach that creates new defect
images using only a small number of existing defect images.
In DefectGen, the process of generating new defect images
involves two main stages: training on defect-free images and
generating defects. First, a Stable Diffusion model is trained
to generate a diverse set of high-quality, defect-free images.
This model serves as the backbone for producing intermediary
images that maintain visual fidelity and detail. In the second
stage, defects are extracted from a limited set of defect images
using binary masks, isolating only the defective regions.
These defects are then modified—adjusting their size, shape,
and position—to introduce variability. Finally, these modified
defects are seamlessly blended into the defect-free images
using an advanced blending technique, resulting in realistic,
visually coherent defect images. This approach simplifies and
strengthens defect analysis by improving the availability of
diverse and realistic defect images with minimal data. We
tested DefectGen on our Steel Surface defect dataset, and the
results demonstrated its effectiveness. The augmented dataset
generated by DefectGen achieved an 11.9% higher accuracy
in terms of Mean Average Precision (mAP) for steel surface
defect detection, highlighting the significant improvement in
detection performance enabled by our approach.

To summarize, our contributions are as follows:
• We propose a novel model, DefectGen, capable of gener-

ating annotated defect images, which can be utilized for
robust data augmentation.

• We successfully apply few-shot defect image generation
using a limited number of defect images, tailored for
industrial settings.

• We demonstrate the advantages of the proposed method
in industrial applications by conducting experiments on a
steel surface dataset. The results highlight the improved
performance in defect detection.

II. PRELIMINARY

A. Diffusion Models

Diffusion models (DDMs) [8], [9], [16], [17], [21], [26]
are probabilistic models designed to generate data by pro-
gressively denoising normally distributed variables. Training
these models involves a forward diffusion process that adds
Gaussian noise to an image x0 over a series of steps, forming
a Markov Chain of length T . The objective is to train the
model to reverse this diffusion process, reconstructing clean
samples from pure noise through the reverse diffusion process.

Given a sample x0 drawn from the real data distribution
q(x), the forward diffusion process incrementally adds Gaus-
sian noise to x0 at each step, governed by a variance schedule
{βt ∈ (0, 1)}Tt=1. This can be formalized as:

q(xt | xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

q(x1:T | x0) =
T∏

t=1

q(xt | xt−1) (2)

For sufficiently large T , xT approximates an isotropic Gaus-
sian distribution.

In the reverse diffusion process, the model aims to undo the
noising steps, mapping noisy samples back to clean images.
This is formalized as:

pθ(x0:T ) = p(xT )
T∏

t=1

pθ(xt−1 | xt) (3)

pθ(xt−1 | xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

For simplicity, practitioners often assume Σθ(xt, t) = σ2
t I.

The model’s output is frequently structured as a residual,
predicting the noise ϵt added at each step rather than directly
generating the image. The reconstructed image x0 is obtained
by subtracting ϵt from xt. Thus, the training objective is:

Lt = Et,x0,ϵt

[
∥ϵt − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵt, t)∥2

]
(5)

where Lt represents the loss function at time step t.

B. Stable Diffusion

Latent Diffusion Models (LDMs) [19] are a widely used
variant of diffusion models (DDMs) that operate in a latent
space rather than directly in pixel space, thus reducing both
training duration and inference costs. In an LDM, an encoder
E(·) compresses an input image into a lower-dimensional
latent representation z, where the diffusion and denoising
operations are carried out. The decoder D(·) then reconstructs
the image from this latent representation, producing x̃ = D(z).

A prominent example of an LDM is Stable Diffusion,
which employs cross-attention layers to accommodate various
conditioning inputs, such as text. Training Stable Diffusion
involves two principal regularization techniques: i) KL-reg,
which aligns the learned latent representation with a Standard
Normal distribution, and ii) VQ-reg, which incorporates a
vector quantization layer within the decoder (akin to VQGAN,
but with the quantization layer embedded in the decoder).
Stable Diffusion, trained on a comprehensive dataset of natural
images, has achieved outstanding results across a range of
tasks. Its pre-trained weights are publicly available, facilitat-
ing its use as a foundational model for diverse downstream
applications.
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III. METHOD

Given input defect free image xi ∈ RW×H×C , a few
number of defect images xd ∈ RW×H×C along with a binary
mask xm ∈ {0, 1}W×H where a value of 1 identifies the
defective regions. The main goal is to generate new defect
images ŷ ∈ RW×H×C . In this context, we refer to the input
xi as the defect free images, xd as the defective image, xg

is the intermediate generated image by Stable diffusion and ŷ
as the generated image. DefectGen consists of two key steps:
(i) training Stable Diffusion on defect-free images, and (ii)
generating defect images. The detailed training procedure is
outlined in Algorithm 1. The overall process of DefectGen is
illustrated in Figure 1 and can be defined mathematically as
below:

ŷ = (xm · xd) + (xg · (1− xm)) (6)

Algorithm 1 Training of DefectGen
1: Input: Defect-free image xi, few annotated images xa,

corresponding mask xm

2: Output: Defect Image xf

3: Train Stable Diffusion with Defect-free Images:
Sample z0 ∼ E(xi)
zT ∼ noise(z0, T ): xt =

√
1− βt · xt−1 +

√
βt · ϵ

for all t from T to 0 do
Denoise (zT , t): xt−1 = xt − βt · ϵθ(xt, t)

end for
xq = D(z0)

4: Generate Defect
xf = (xm · xa) + (xq · (1− xm))

5: Return xf

A. Training on Defect-free Images

In the first phase of our approach, we focus on training a
Stable Diffusion model to serve as the foundational backbone
of DefectGen. The primary objective at this stage is to leverage
the powerful capabilities of Stable Diffusion to produce a wide
variety of defect-free images, which will later be instrumental
in the process of defect generation and inpainting. Stable
Diffusion has demonstrated remarkable success in generating
high-quality, photorealistic images across a diverse range of
contexts. By integrating this model within DefectGen, we
capitalize on its strengths to ensure that the generated images
not only exhibit high fidelity but also maintain the rich detail
and visual consistency expected in real-world imagery. Given
a clean, defect-free input image xi ∈ RW×H×C . The Stable
Diffusion model processes this input to generate a new image
xg ∈ RW×H×C . This generated image xg is the intermediary
output of the proposed DefectGen.

B. Generation of Defects

The second phase of DefectGen involves two key steps: (i)
defect extraction and modification, and (ii) deep blending.

(i) Defect Extraction and Modification: In the defect
extraction step, a small set of defect images is utilized,
each accompanied by its corresponding binary mask. The
process begins by applying the binary mask to the defect
image, effectively extracting only the defective region while
suppressing the rest of the image. Specifically, all areas of
the image outside the defect region are set to zero, leaving
a clean, isolated defect. This approach ensures that only the
defect is preserved, allowing for more controlled and targeted
manipulation.

After isolating the defect, the next step involves modifying
these extracted defects according to specific conditions. This
modification can include altering the size, shape, or location of
the defect within the image. By introducing variability in these
parameters, a diverse set of defects can be generated. This ran-
domization is crucial as it enables the model to handle a wide
range of defects, enhancing its robustness and generalization
capability in the subsequent stages of DefectGen. The output
of this step is a collection of defects where each defect has
been carefully extracted, modified, and positioned.

(ii) Blending. In the blending step, an advanced image
blending technique is employed to seamlessly integrate the
defects extracted and modified in the previous step into a
generated image. By this stage, we have a diverse set of
defects, each uniquely tailored in terms of size, shape, and
location.

The blending process begins by randomly selecting one of
the generated images from the first phase of DefectGen. This
image serves as the base onto which defects will be applied.
Next, one or more defects are randomly chosen from the
diverse set of defects created in the extraction and modification
step. These selected defects are then blended into the base
image. The blending technique ensures that the defects are
seamlessly integrated, preserving the visual coherence and
realism of the image.

IV. EXPERIMENT

To verify the effectiveness of DefectGen, we conduct exper-
iment on our Steel Surface dataset to extend the dataset and
tested it for defect detection task.

A. Dataset

We used our Steel Surface dataset for this experiment, which
comprises 400 defect-free samples. The dataset includes two
types of defects: wrinkles and nozzles, with 20 samples of
wrinkle defects and 25 samples of nozzle defects. All images
were captured using a high-resolution camera.

To prepare the dataset, we manually annotated the defects
and created binary masks. The images and masks were then re-
sized to 600x600 pixels. Stable Diffusion was initially trained
on the defect-free images to establish a baseline model. This
initial training aimed to accurately capture the characteristics
of defect-free steel surfaces before generating defect images.
Subsequently, we generated a total of 3,000 defect images,
with 1,500 images for each defect category. These synthetic
images were split into training (80%), testing(10%), and
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Fig. 1. Overview of the proposed DefectGen: This approach involves two main steps: i) training Stable Diffusion to generate images (top part of the figure)
and ii) generating defect images (bottom part of the figure).

validation(10%) sets. The total number of images used for
training, testing, and validation is summarized in Table I.

B. Implementation Details

We implemented our network and conducted experiments
using Python 3.8.10 and PyTorch 1.13.1, running on a system
equipped with four NVIDIA GeForce RTX 3090 GPUs, each
featuring 24GB of memory. To optimize model parameters,
we utilized the AdamW optimizer [14] with a learning rate of
1 × 10−5, and default beta values set to 0.9 and 0.999. The
input resolution was configured to 255× 255, and we set the
default batch size to 16 for training.

TABLE I
OVERVIEW OF THE STEEL SURFACE DATASET USED IN THIS EXPERIMENT

Defect category Train Test Validation
Wrinkles 1,200 150 150
Nozzles 1,200 150 150

C. Result Analysis

Our main objective in this study is to generate high quality
synthetic images for use in industries. Since annotating data
is costly, the generated images must contain the aanotations

of the defects location exactly. According to Figure 3 and
2, our approach successfully generates realistic images. The
appearance of the generated images closely matches the ge-
ometries of the input guide. Furthermore, the defects seen in
these images match the defects shown in the provided masks.

TABLE II
AVERAGE RESULTS FOR DEFECT DETECTION ON STEEL SURFACES,

SPECIFICALLY FOR WRINKLE AND NOZZLE DEFECTS.

Used data mAP Precision Recall
Real only 28.54 38.12 32.71

Synthetic only 22.32 30.25 25.7
Real + Synthetic 40.45 53.89 42.35

To evaluate the authenticity of the generated data, we utilize
the Frechet Inception Distance (FID) [7]. Comparing the syn-
thetic image distribution to the Steel surface data distribution
results in an FID score of 99.57. We continue to investigate the
possibility of utilizing these annotated synthesized images in
an actual industrial setting, particularly through the utilization
of a well-known object detection model, YoLo-NAS. We
trained YoLo-NAS in four different scenarios: i) using real
data for training; ii) using real data with basic augmentation
techniques for training; iii) training on synthetic data only and
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Fig. 2. Examples of real defect images and synthetic images generated by DefectGen for wrinkle defects in a steel surface dataset.

Fig. 3. Examples of real defect images and synthetic images generated by DefectGen for nozzles defects in a steel surface dataset.

iii) pre-training on synthetic data and fine-tuning on real data.,
results on a different test dataset show that utilizing synthetic
data for training consistently improves defect detection for all
considered metrics. The quantative results as illustrates in II
indicate that combining real and synthetic data significantly
improves defect detection performance compared to using only
real or synthetic data alone. Specifically, the mean average
precision (mAP) increased by approximately 10% when both
real and synthetic data were used for training. This improve-
ment highlights the benefit of incorporating synthetic images
to enhance model performance.

The qualitative results are illustrated in Figures 2 and 3.
Figure 2 presents a comparison between real and synthetic
images for the wrinkle defect category. In this figure, the

top row displays real images, while the bottom row shows
synthetic images generated for wrinkles. Upon comparison, it
is evident that the synthetic images closely resemble the real
ones. Although there are some discrepancies, such as deeper
black regions in the background of the synthetic images, the
wrinkles themselves are quite similar in appearance to those
in the real images. The generated wrinkles vary in size and
shape, reflecting a diverse range of defect characteristics that
are present in the real dataset.

Figure 3 presents a comparable evaluation for the nozzle
defect category. Here, the top row shows real nozzle de-
fect images, while the bottom row features synthetic images
generated by DefectGen. As with the wrinkle images, the
synthetic nozzles exhibit a high degree of similarity to the
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real images, with realistic shapes and sizes, though some
texture and background differences are present. These qualita-
tive evaluations underscore the effectiveness of our synthetic
data generation approach in producing realistic and varied
defect images, which could enhance the performance of defect
detection models.

V. CONCLUSION

In this paper, we have introduced DefectGen, a novel
technique designed to extend steel surface defect datasets,
ultimately improving the performance of steel surface defect
analysis. Our approach leverages an image-to-image diffusion
model, specifically Stable Diffusion, to generate highly realis-
tic defect-free images. These images serve as the foundation
for our subsequent blending technique, which seamlessly
integrates defects into the generated images, resulting in a
comprehensive set of defect images. The application of Defect-
Gen to our steel surface dataset has demonstrated a significant
performance improvement, with an increase of approximately
20% in defect analysis accuracy. Looking forward, we plan to
extend our work by applying DefectGen to additional datasets
and validating its effectiveness across different domains.
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