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Abstract—This paper addresses a method for detecting Out-
of-Distribution (OOD) objects by leveraging pre-trained segmen-
tation models. The research on OOD detection focuses on the
ability to accurately identify and classify untrained classes as
“unknown.” Previous methods rely on strong augmentation to
detect OOD objects. However, these augmentation-based methods
assume specific characteristics of OOD objects and can suffer
from overfitting due to the limited datasets. In this study, we
propose a training-free OOD object detection approach that
infers OOD objects from a pre-trained segmentation model
without additional training. Specifically, our method combines
two modules: rejection of regions confidently recognized by
the model (inliers) and selection of masks that capture the
characteristics of OOD objects (outliers). Furthermore, using
a class-agnostic segmentation model, the probability of OOD
objects is refined at the object level, enhancing performance.
Our method shows competitive performance on datasets where
OOD objects are encountered in autonomous driving contexts.
Additionally, we show the utility of measuring the model’s
competency to recognize what it knows and doesn’t know from
the perspective of the pre-trained model.

Index Terms—Deep learning, object segmentation, autonomous
driving, out-of-distribution

I. INTRODUCTION

There has been growing interest in the capabilities of arti-
ficial intelligence models. Typically, these models are trained
on large-scale datasets through supervised learning, achieving
high performance on well-defined target applications. While
this approach has driven the success of machine learning mod-
els, recent research has increasingly focused on understanding
the extent of knowledge within these trained models and
assessing their competencies in various scenarios [1], [2]. In
this context, it is crucial to determine whether an input is Out-
of-Distribution (OOD) from the perspective of the model’s
competency.

In the application of autonomous driving, detecting OOD
objects—those that the model has not encountered during
training—is particularly important, as it plays a critical role
in tasks such as collision avoidance and planning. However,
due to the limited data available for OOD objects, accurately
modeling their shapes can be challenging. Earlier approaches
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Fig. 1. Comparison of semantic segmentation and anomaly detection results:
(a) Input image, (b) Semantic segmentation, (c) OOD object detection.

attempted to detect OOD objects by modeling the background
using video information [3]–[5], but more recent methods
focus on leveraging the internal competency of pre-trained
segmentation models to infer OOD objects [6]–[8].

For example, as shown in Figure 1, even in unusual sce-
narios, such as a car wheel rolling on the road, a semantic
segmentation model may classify the regions into specific
classes. In such cases, the model might mistakenly label the
OOD object, like the wheel, as a known class, such as ‘Truck’
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(Figure 1(b)). This misclassification occurs because traditional
models often rely on detection confidence, leading to unseen
objects being classified as ‘background’ and thus ignored.
This presents a significant risk, especially in safety-critical
applications like autonomous driving. Therefore, the goal of
this paper is to leverage the model’s inherent knowledge
to detect and identify regions it considers anomalous or
‘unknown,’ as demonstrated in Figure 1(c). Through this map,
the model can provide crucial information about objects it
has not encountered before, thereby enhancing safety and
reliability.

Conventional methods to OOD detection have involved
additional training with synthetic data to differentiate the
characteristics of inliers and outliers, leading to the retraining
of networks. Energy-based models, which have shown good
performance, operate by analyzing the distribution of class
probabilities, assigning lower energy to well-learned inliers
and higher energy to outliers. However, these methods require
additional training and often produce a high number of false
positives at the pixel level. Recently, approaches leveraging
transformer-based networks to detect OOD masks at the mask
level have shown promising results. These methods exploit the
capabilities of networks trained on vast datasets to detect OOD
objects without the need for further training, making effective
use of the model’s inherent knowledge.

In this paper, we extend the mask-level transformer-based
methods using two key strategies. First, we identify candidate
regions for out-of-distribution detection by combining two
types of masks: a rejection-based mask that excludes regions
where the model is confident, and an unknown mask that cap-
tures areas with low probabilities of belonging to any known
class while also being confused with all pre-trained classes.
Furthermore, similar to human perception, where an object can
be recognized as a distinct entity without knowing its exact
nature, we enhance the detection of unknown object regions by
integrating with the Segment Anything model, which excels at
identifying object boundaries in a class-agnostic manner. Ex-
perimental results on the SegmentMeIfYouCan (SMIYC) [9]
and RoadAnomaly [10] datasets, which simulate abnormal
object detection in autonomous driving scenarios, demonstrate
that our proposed method effectively detects OOD objects by
leveraging the model’s inherent knowledge without additional
training. Moreover, our method is adaptable to any pre-trained
model, making it applicable not only for detecting unknown
objects on the road but also as a tool for estimating areas or
objects that the detector is uncertain about, thus serving as a
valuable resource for further training or model improvement.

II. RELATED WORKS

Out-of-Distribution (OOD) detection evaluates a model’s
ability to recognize and classify data outside its training
distribution as “unknown.” Recent advances have emphasized
energy-based models, which assess the distribution of class
probabilities rather than relying solely on confidence scores.
In these models, inliers are assigned low energy and exhibit

a peaked distribution, while outliers receive high energy and
tend toward a uniform distribution.

Traditional methods have enhanced OOD detection by in-
corporating synthetic training data and refining anomaly de-
tection at the pixel level. For instance, PEBAL [11] effectively
differentiates inliers from outliers by adjusting energy levels
with soft margin parameters and introducing smoothness and
sparsity regularization for outlier regions.

Balanced Energy [12] extends PEBAL by incorporating
prior knowledge from the dataset to assign different weights
to each class during loss computation. This approach bal-
ances energy distribution across classes during OOD detection.
However, it requires the estimation of prior probability from
sampled data during training.

Residual Pattern Learning (RPL) [13] integrates residual and
contrastive learning techniques to address the degradation of
inlier class performance when retraining with synthetic data.
RPL preserves inlier weights and introduces residual learning
for OOD data, while contrastive learning aligns synthesized
images with their originals in feature space, separating unre-
lated backgrounds.

Rejected by All (RbA) [6] uses Mask2Former [14], a state-
of-the-art segmentation algorithm. In this approach, trans-
former decoder queries represent class probabilities, and RbA
interprets regions where all queries are negative as unknown
objects. Despite limited data, the model is fine-tuned to
classify outlier pixels as belonging to unknown classes.

Similarly, Maskomaly [7] employs a rejection-based method
to exclude regions where the model lacks confidence, assum-
ing that masks from certain queries represent unknown objects
without additional training. Maskomaly selects the top four
queries from the SegmentMeIfYouCan (SMIYC) [9] validation
dataset that maximize performance, but this approach can lead
to overfitting to dataset-specific characteristics.

The proposed method builds on RbA’s rejection-based
strategy and Maskomaly’s training-free approach but avoids
overfitting by selecting different queries for each image.
Additionally, it improves the estimation of unknown object
boundaries by incorporating a class-agnostic segmentation
model, enabling more accurate object-level decisions.

III. METHOD

A. Rejection by Inliers

Our proposed method is fundamentally based on a trans-
former segmentation model. As illustrated in Figure 2, we
employ the Mask2Former model [14], which takes an image
as input and outputs both a membership map and class
probabilities for each query. For instance, if the model has N
total queries and is trained on K classes, the class probabilities
have dimensions of N × K, and the membership map has
dimensions of K ×H ×W .

Previous method [6] has analyzed how object queries in
mask classification behave like one-vs-all classifiers, operat-
ing almost independently when segmenting different masks.
Based on this observation, the rejection-based method initially
defines the entire image region as an anomalous and then
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Fig. 2. Overall framework of the proposed method.

gradually removes the mask for regions confidently predicted
by each query. This approach can be mathematically expressed
as follows:

mreject[x, y] = min
q∈Q

(
1−mq[x, y] · max

1≤k≤K
pq[k]

)
, (1)

where Q denotes the set of query indices, and x and y rep-
resent coordinates in the image. This method is conceptually
similar to those employed in Maskomaly and RbA.

B. Selection for Anomalous Region

In the original Maskomaly approach, clues for identifying
anomalous regions were derived by referencing the ground
truth of the validation dataset. This allowed the model to infer
queries that represent anomalous areas. However, while the
ground truth can be useful for evaluating the model’s perfor-
mance in specific scenarios, using it to select specific queries
introduces issues. These issues include dataset overfitting and
unrealistic settings for practical applications.

To address this, we propose a method for dynamically
selecting queries likely to represent anomalous regions based
on the input image. According to the analysis in the RbA
paper, outliers are often identified by queries with very low
confidence and are rarely voted on by object queries. Addi-
tionally, it is a common assumption in many OOD detection
studies that OOD objects should exhibit a uniform probability
distribution across classes.

Based on these observations, we select queries likely to
represent anomalous masks according to two criteria. First,
to ensure the query has a low probability of belonging to any
inlier class, we use the following criterion:

S = {q ∈ Q | (1− pq[K + 1]) < Tvoid}, (2)

where K + 1 indicates the void (background) class.
Second, we select queries that not only have a low prob-

ability of belonging to any inlier class but also exhibit a

distribution as close to uniform as possible. This is done using
the following criterion:

Sselected = arg min
q∈S,|Sselected|=N

Var (pq[0], pq[1], . . . , pq[K]) ,

(3)
Using these selected queries, we identify complementary

regions for the anomalous area in a manner opposite to
the rejection-based method. Similar to the approach used in
Maskomaly, we combine the mreject and maccept masks linearly
to generate a heatmap-like region that highlights the OOD
objects.

maccept[i, j] = max
s∈Sselected

(ms[i, j] · ps[K + 1]) . (4)

minit = λ ·mreject + (1− λ) ·maccept (5)

C. Combining with Segment Anything

The final mask is obtained by binarizing the heatmap in
Eq. 5 through thresholding. However, this approach may result
in a significant number of false positives. To improve object-
level decision-making, we recognize that while the exact shape
of an OOD object is unknown, the inherent characteristic that
objects typically have closed boundaries remains consistent.

To leverage this property, we utilize the Segment Anything
Model (SAM) [15], which performs class-agnostic segmenta-
tion. The SAM model generates masks for any object in the
image based on user input prompts, regardless of class. When
these prompts are applied uniformly across the entire image,
SAM provides candidate masks for all objects present in the
scene. This allows us to group anomalous values into distinct
object-level segments, reducing false positives and leading to
more accurate object-level inferences.

When the input image I is processed through the Segment
Anything model (SAM ), it produces the following segment
regions:

SAM(I) = r1, r2, . . . , rN
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Fig. 3. Integration with the Segment Anything Model: (a) SAM result, (b) Initial mask, (c) Refined mask, and (d) Anomalous region overlaid on the input
image.

where ri ∈ {0, 1}H×W represents the i-th segment region
(binary mask). Next, the values of the initial mask minit within
each segment are averaged and assigned to the refined mask
mrefined as shown in the equation below:

mrefined[x, y] =

N∑
i=1

ri(x, y) ·
∑

x′,y′ minit[x
′, y′] · ri(x′, y′)∑

x′,y′ ri(x′, y′)

(6)
Figure 3 shows the application of the Segment Anything

model. As shown in Figure 3(a), the SAM model extracts
class-agnostic masks from the input image. These masks are
then used to refine the initial mask obtained through our pro-
posed method, as shown in Figure 3(b). Specifically, for each
segment identified by SAM, the values from (b) are averaged
within that segment and assigned to the corresponding mask.
This process results in a heatmap that is better aligned with
object contours, as shown in Figures 3(c) and (d).

This approach not only reduces false positives but also
improves the model’s performance by making object-level
decisions, even when only part of an object is identified
as unknown. By combining the initial mask with the object
boundaries identified by SAM, we enhance the overall accu-
racy of OOD detection.

IV. EXPERIMENTS

A. Experimental Setup

We use the SegmentMeIfYouCan (SMIYC) [9] and Road-
Anomaly [10] datasets, both of which contain road anomalies
in street scenes with pixel-level annotations. We evaluate the
performance of various approaches, including ours, using the
Average Precision (AP) metric for anomaly segmentation. For
our experiments, we employed the Mask2Former model [14]
with a Swin-L [16] backbone, which was trained on the
CityScapes dataset for semantic segmentation to ensure a fair
comparison with existing methods.

For our experiments, we set the hyperparameters as follows:
Tvoid = 0.99 in Eq. (2), λ = 0.6 in Eq. (5), and N = 2 in
Eq. (3). All other key parameters and techniques, including

the method for handling ambiguous labels in the ground truth,
were applied in the same manner as in the Maskomaly [7].

B. Quantitative Results

We compare our method against baselines and state-of-
the-art methods, using semantic segmentation models like
DeepLabV3 [18] and Mask2Former [14]. The segmentation
frameworks employed by each method are shown in Table I.

Table I shows the quantitative results of our approach on the
SMIYC [9] and RoadAnomaly [10] datasets. Without relying
on additional data and training, our method achieved the
second-highest performance on SMIYC, just behind Masko-
maly, and the highest performance on RoadAnomaly. As noted
earlier, Maskomaly’s approach directly selects queries based
on the validation dataset to identify anomalous mask regions,
which can result in overfitting and create an unfair comparison.
On the RoadAnomaly dataset, our method outperforms the
baseline methods (RbA and Maskomaly). Also, it demon-
strates performance nearly on par with RbA, even with its
additional training.

C. Qualitative Results

Figures 4 and 5 show the qualitative results on the SMIYC
and RoadAnomaly datasets, respectively. As shown in Figure
4, Maskomaly performs relatively well on the SMIYC dataset,
but our proposed method, with the help of the Segment
Anything model, further reduces false positives.

In the results on the RoadAnomaly dataset, illustrated in
Figure 5, Maskomaly encounters issues where areas like build-
ing walls and signposts are incorrectly detected as anomalous
regions. This is because Maskomaly relies heavily on the
SMIYC validation set to infer the mask regions of OOD
objects. In contrast, our method addresses this issue by model-
ing anomalous regions through query selection tailored to the
characteristics of each image.

Figure 6 shows the results from Mask2Former, highlighting
both the semantic segmentation and the anomalous regions
detected by our method with a model trained on the COCO

2101



TABLE I
BENCHMARK RESULTS ON SMIYC [9] AND ROADANOAMLY DATASET [10]. WE SEPARATE METHODS THAT REQUIRES ADDITIONAL TRAINING WITH

AUXILIARY DATA.

Method Segmentation Framework Aux. Data AP for SMIYC AP for RoadAnomaly
PEBAL [17] DLV3+ [18] ✓ 49.1 45.1
SynBoost [19] VPLR [20] ✓ 56.4 38.2
DenseHybrid [21] DLV3+ [18] ✓ 78.0 63.9
Max. Entropy [22] DLV3+ [18] ✓ 85.5 79.7
EAM [8] M2F [14] ✓ 93.8 66.7
RbA [23] M2F [14] ✓ 90.9 85.4
DenseHybrid [24] DLV3+ [18] ✗ 51.5 35.1
ObsNet [25] DLV3+ [18] ✗ 75.4 54.7
EAM [8] M2F [14] ✗ 76.3 66.7
RbA [23] M2F [14] ✗ 86.1 78.5
Maskomaly [7] M2F [14] ✗ 93.4 70.9
Proposed method M2F [14] ✗ 91.7 81.2

(a)

(b)

Fig. 4. Qualitative comparison of results on the SMIYC dataset [9]: (a)
Maskomaly [7] and (b) Proposed method.

(a)

(b)

Fig. 5. Qualitative comparison of results on the RoadAnomaly dataset [10]:
(a) Maskomaly [7] and (b) Proposed method.

dataset. As discussed in the Introduction, semantic segmenta-
tion (left column) segments the image based on the highest
confidence among inlier classes, making it challenging to
assess the model’s true competency in recognizing certain
regions. By applying our method (right column), OOD regions
are detected based on the model’s inherent competency, offer-
ing not only better OOD detection but also valuable insights

Fig. 6. Semantic segmentation results and anomaly detection for coco-trained
model

for further model improvement.

V. LIMITATIONS AND FUTURE WORKS

This paper proposed a method for detecting OOD ob-
ject regions by leveraging the model’s inherent competency
without additional training. However, the definition of OOD
can be ambiguous and varies dependeing on the task. For
example, a giraffe on a road might be considered OOD in
conetext of autonomous driving but an inlier for a model
trained on COCO, which could cause a misalignment with the
intended task. Future research will focus on enhancing model
competency, particularly in scenarios where some pre-trained
models possess knowledge that others do not. Additionally,
we plan to explore the use of multi-level features to improve
the effectiveness of OOD detection.

VI. CONCLUSION

In this paper, we proposed a method for Out-of-Distribution
(OOD) object detection that leveraged the inherent compe-
tency of transformer-based segmentation models. Our ap-
proach used a rejection-based strategy to eliminate regions
confidently predicted by known classes, followed by dy-
namic query selection for identifying anomalous regions. This
method addressed issues like overfitting by tailoring query se-
lection to the input image. We also integrated our method with
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the Segment Anything Model (SAM) to refine object-level
OOD detection, reducing false positives and improving accu-
racy. Experiments on the SMIYC and RoadAnomaly datasets
showed that our approach outperformed existing methods in
anomaly segmentation, achieving higher Average Precision
(AP) scores. Its flexibility allows adaptation to different pre-
trained models without additional training, making it suitable
for various applications, including autonomous driving. By
focusing on the model’s ability to recognize and handle
unknown objects, our method contributes to enhancing the
safety and reliability of AI systems deployed in real-world
scenarios.
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