
Hydra Radio Access Network (H-RAN):
Multi-Functional Communications and Sensing

Networks, Adaptive Power Control, and
Interference Coordination

Rafid I. Abd
Scho. of Electrical and Electronic Eng.

Yonsei University
Seoul 03722, South Korea

Email address: Rafid@yonsei.ac.kr

Kwang Soon Kim
Scho. of Electrical and Electronic Eng.

Yonsei University
Seoul 03722, South Korea

Email address: ks.kim@yonsei.ac.kr

Daniel J. Findley
Department of CCEE

North Carolina State University
North Carolina 27695-8601, USA

Email address: Daniel findley@ncsu.edu

Abstract—The increasing urgency for innovative cohesive net-
works stems from the necessity to integrate various networks,
services, and modern technologies. Researchers are progressing in
integrating diverse networks, modern technologies, and services
through cohesive networks to facilitate more streamlined opera-
tions. A unified infrastructure enables effective data sharing from
various sources, breaking down silos that typically hinder data
exchange. Hydra radio access networks (H-RANs) are designed
to achieve researchers’ ambitious objectives by seamlessly com-
bining diverse networks and technologies into a single, intelligent,
perceptive, and dense infrastructure. However, the proliferation
of dense deployments of traditional wireless local area networks
(WLANs) is significantly contributing to excessive power con-
sumption and encountering substantial interference challenges.
In this paper, we propose a novel collaborative approach utilizing
the H-RAN perceptual network architecture for distance-based
adaptive power control and interface mitigation. By harnessing
this integration into a cooperative multi-sparse input/multi-task
learning-based federated learning (C-SMTL) framework. The
cooperative architecture adeptly addresses the challenges associ-
ated with dynamic power control and interference coordination.
Simulation results show that our strategy significantly improves
network performance. This is done by achieving high throughput
capacity, reducing interference by 90%, and maintaining high
efficiency even with increasing user density.

Index Terms—Hydra radio access network (H-RAN), Per-
ceptive networks, Multi-functional networks, Heterogeneous
data, AI/ML engines, cooperative multi-sparse input/multi-task
learning-based federated learning (C-SMTL), Interference coor-
dination, and Adaptive power control.

I. INTRODUCTION

Conventional networks are often hampered by their fixed
configurations, which lack the flexibility to adapt to dynamic
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government (MSIT) (No.RS-2024-00397216, Development of the Upper-mid
Band Extreme massive MIMO(E-MIMO), 50%) and the National Research
Foundation of Korea (NRF) grant funded by the Korea government (MSIT)
(No.2022R1A5A1027646, Augmented Cognition Meta-Communications Re-
search Center, 50%.

changes in network environments. This ”one-size-fits-all” ap-
proach typically involves pre-configured settings that remain
fixed, unable to respond effectively to variations in user de-
mand, traffic patterns, or environmental changing conditions.
Anticipating future demand requires self-learning RAN sys-
tems equipped with modern AI capabilities to autonomously
adjust to changing network parameters and better serve future
demands [1], [2]. Hydra radio access networks (H-RANs)
represent a significant evolution in the telecommunications
and sensor ecosystem landscape in anticipation of 6G de-
ployment and beyond [1], [2]. The strength of H-RANs lies
in their capability to merge various technologies, applica-
tions, services, and networks into a single, holistic intelligent
network, extensively incorporating artificial intelligence (AI)
into all network components. On the H-RAN platform, dense
deployment of sensors and radio units (SRUs) is essential
to provide adequate coverage and capacity for the growing
number of connected devices in challenging MMW wireless
communication scenarios [1]. However, dense deployments
of SRUs can present significant challenges, including severe
interference and high energy consumption [3]–[6]. Therefore,
there is a pressing need to develop an approach designed
to optimize system performance for distinct scenarios, as it
allows for real-time responses to dynamic changes allowing for
adjustments to changing conditions without significant delays.

To overcome this limitation, we propose a novel C-SMTL
framework for adaptive power control and interference coordi-
nation over distance. In this scheme, sensors embedded within
SRUs and throughout the network continuously capture real-
time data concerning various parameters (e.g., user locations,
distance, channel conditions, signal strength, etc.). This data
undergoes preprocessing to generate a comprehensive repre-
sentation of the network, encapsulating current network con-
ditions, and enabling sophisticated network optimization [1],
[2]. Afterward, C-SMTL leverages shared data and learning
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Figure 1: The disaggregated architecture of SRUs and Hydra distributed unit (H-DU) perceptual networks facilitates
heterogeneous network deployment. Adaptive power control algorithms enable adaptive transmission strategies that optimize
power allocation based on real-time network conditions (e.g. location, distance, interference from other SRUs.

across different tasks to dynamically optimize power control
and interference. This synergy enables real-time decisions that
respond to adaptive power control and interference in dense
networks. This framework supports the complexities inherent
in adaptive power and interference management within H-
RANs, as it includes factors such as nonlinear relationships.
Furthermore, the interference optimization challenge is framed
as a mixed-integer nonlinear programming problem, which
allows for the consideration of both continuous and discrete
variables in the optimization process. For instance, in scenarios
where the sender and receiver are in close proximity, it
is beneficial to avoid using maximum transmission power.
Instead, the system can intelligently adjust and lower the
transmission power based on the actual distance between the
sender and receiver. By reducing transmission power in close-
range communications, the overall energy consumption of the
system is optimized. When transmission power is lowered
appropriately, the risk of cross-interference caused by multiple
users operating simultaneously on the same frequency is
greatly diminished. Simulation results show that our approach
significantly improves network performance and achieves an
impressive 90% reduction in interference levels while main-
taining high efficiency, even as user density increases.

II. SYSTEM MODEL

As shown in Fig. 1, in the system model, we consider
an outdoor environment of H-RAN network topology [1],
[2] with multi-access downlink cellular networks of SRUs.
SRUs represent the key components in the H-RAN architecture
that perform tasks beyond traditional communication. It acts
as low-powered nodes providing coverage and capacity en-
hancements, encompassing both sensing and communication
functionalities, enabling the network to process sensor data
while also facilitating reliable wireless communication [1].
As shown in Fig. 1, the network model consists of four
SRUs with at least two overlaps between each SRU. SRUs
are strategically placed to provide overlapping coverage areas.
This means that multiple SRUs can serve the same user or re-
gion, offering redundancy and multiple communication paths.
In other words, SRUo possesses the potential to cooperate
to serve common user equipment (UE). According to this
definition, the network can be represented by an arbitrary
diagram H = ⟨SRUs, SRUo⟩ where SRUo ⊆ SRUs, where
SRUs represent the cluster of SRUs controlled by Hydra
distributed unit (H-DU), and SRUo is the overlapping SRUs
set. In dense SRUs, a UE can simultaneously reach multiple
SRUs located in its vicinity. This spatial arrangement allows
for enhanced connectivity options, as the UE has access to
various SRUs capable of providing service. The transmission
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power rate between a user and its associated SRU is indeed
shaped by a variety of factors. Key elements include the user’s
location, the distance to the SRU, and interference signals from
the surrounding environment (e.g., adjacent SRUs). Therefore,
an efficient optimization scheme can be achieved by leveraging
real-time data collected from SRUs through a centralized
controller, the H-DU [1]. For example, as illustrated in Fig.
1, each SRU has a distinct coverage area with four over-
lapping channels. In the real world, this overlapping might
lead to severe interference among SRU1, SRU2, SRU3, and
SRU4. By coordinating power adjustments across SRUs based
on this overlapping interference information, the H-DU can
ensure efficient energy usage while minimizing Co-channel
interference [2]. As illustrated in Fig. 1, each SRU’s coverage
area is depicted as a circle centered on the SRU, with the
radius expanding as the transmit power increases. In scenarios
where a user resides within the overlapping coverage areas
of multiple SRUs operating on the same channel, interference
signals from these SRUs will be received, leading to a sig-
nificant degradation in H-RAN performance. To quantify the
interference within the network, a physical interference model
is utilized to evaluate the interactions between user nodes and
network links [3]–[6]. This model allows for the calculation of
the signal-to-interference-plus-noise ratio (SINR) for a given
user link within the prevailing interference environment. By
assessing SINR, the model effectively captures the cumulative
impact of interference among overlapping SRUs, providing a
detailed understanding of how adjacent SRUs influence overall
signal quality and network performance.

A. Channel Model

In distance-based adaptive power control, the transmit
power is dynamically adjusted based on feedback from the
UEj and SRUs, utilizing data e.g., sensor readings, and
channel quality indicators (CQI). The duration of periodic
feedback ti reported by SRUi, includes the UEj information
e.g., position Xj(xj , yj), and the distance between SRUi and
UEj Dj(dj,x, dj,y).

The received signal at the user UEj from the ith SRUs is
expressed as

yUEi = hi
√
piWisi +

Nc
m=1,m ̸=i

h′
i,m

√
pmwmsm + ni, (1)

where the first, second, and third terms describe the desired
signal vector, the inter-SRUs interference vector, and the
noise vector, respectively. hi ∈ CMi×Ni

corresponds to
the desired channel matrix between SRUi and UEj , and
h′
i,m ∈ CMm×Nm

is the interference channel matrix describ-
ing channel gains between UEj and SRUi. pi and pm indicate
the power allocation matrix for desired and interference signal
vectors, correspondingly. Wi refers to the desired precoder,
and si, sm ∈ C refers to the transmitted signals from the
desired signal ith, and the inter-SRUs interference mth, in
that order. ni represents the noise vector. The transmit power
of transmitter SRUi in time slot [t] is denoted as P

(t)
i , we can

denote the power allocation of the SRUi in time slot [t] as
p
(t)
i =


p
(t)
1 , . . ., p

(t)
n

⊺

In MMW channels, with accurate beamforming the gain of
the line-of-sight (LoS) is the dominant path, hence the MMW
channel model can be simplified to a single-path LoS model
as follows:

hb,i,j = a(θb,i,j)
αb,i,j√

L(1 + dβi,j)
, (2)

where hi,j ∈ CM×1 is the channel complex coefficient vector
of UEj user and SRUi on bth beam, a(θk,i,j) is the steering
vector, αb,i,j ∈ CN(0, σ2) is the complex gain, and dβi,j is
the distance of the link (i, j) with path loss exponent β.

We propose an AI/ML D-engine-based SMTL model where
H-DU jointly controls the beamforming vectors and transmit
powers at the SRUs [1], [2]. According to the H-RAN stan-
dard, “Task1” [2] the optimal beamforming vector is selected
from a predefined codebook utilizing sensor data to aid AI/ML
D-engine-based beam selection [1], [2]

C
(1)
i,j =



1, if (i, j) = argmax

m,n
Rm,n

0, otherwise.
(3)

where Ci,j is a label matrix, Rm,n represent all beam pairs in
the codebook, (i, j) corresponding to the optimal beam pair
in the codebook.

III. COOPERATIVE MULTI-SPARSE INPUT/MULTI-TASK
LEARNING-BASED FEDERATED LEARNING (C-SMTL)

The limited ability of conventional RANs to provide exten-
sive collaboration among network components and adapt to
real-time changing conditions, coupled with the rapid advance-
ment of emerging technologies, intensifies their inadequacies
[1], [2]. Addressing this inadequacy of traditional networks
requires a fundamental shift towards more perception-driven,
intelligent, predictive, responsive, and collaborative frame-
works. H-RAN powered by SMTL is specifically structured
to overcome conventional RAN inadequacies and rigid archi-
tectures. SMTL is notable for its ability to adapt to changing
network environments. As input data characteristics shift,
SMTL can seamlessly switch between a variety of tasks
according to the current situation. Due to this ability, the model
is able to address specific requirements that arise as a result
of fluctuations in conditions [1], [2].

A. Distance-Based Adaptive Power Control

Adaptive power control contributes to improved spectral
efficiency by minimizing wasted energy on unnecessary trans-
mission power. By adjusting transmit power levels to match
the actual requirements of the communication link, these algo-
rithms maximize the use of the available spectrum and enhance
the overall data throughput of the network. In this subsection,
we introduce a distance-based power control approach, which
is used to adjust the transmit power of the SRU to account
for variations in the propagation environment and the distance
between the SRU and the UE. The general idea behind our

74



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distance-1 

Distance-2 

Distance-3 

SRU-i Ptx1 

Ptx2 

Ptxj 

UE-1 

UE-2 

UE-j 

Figure 2: Distance-based dynamic power control utilizes the
distances between transmitter and receiver nodes to adjust the
transmission power accordingly.

approach is to ensure that the received signal strength at the
UE is sufficient for reliable communication while minimizing
energy waste and minimizing interference from neighboring
SRUs. The transmit power is adjusted dynamically according
to the estimated path loss between the SRUi and the associated
UEj , which is determined by factors such as location, distance,
terrain, and obstacles in the propagation environment, etc. As
shown in Fig. 2, our models describe how signal strength
attenuates as it propagates through space, based on the distance
between the transmitter and the receiver. Assume that Em

refers to the minimum received energy sufficient to success-
fully decode the data transmitted by a transmitter. Accordingly,
if the transmitter and receiver are distanced by a distance d, the
minimum transmission energy needed to convey information
is Emdβ , where β represents the path-loss exponent. Thus,
the total transmitter energy can be written as

PSRUi = PgEmdβ , (4)

where Pg is the actual transmission energy, Em denotes the
minimum received energy for a distance d with β path-
loss exponent. The gains of each channel are assumed to be
independent of each other, independent of spatial location,
symmetric, and identically distributed [7]–[9]. The SINR of
link bth in time slot [t] is a function of allocation power, which
can be defined as

SINR(t)
i (p) =

g
(t)
i→ipi∑

j ̸= ig(t)j → ipj + σ2
n

, (5)

where g
(t)
i→j defined as the downlink channel gain from SRUi

to UEj in time slot t, g(t)j→i represents the channel gain from
UEj to SRUi, and σ2

n is the additive white Gaussian noise. For
the sake of simplicity, we assume that the channel coefficients
are exponentially distributed in a Rayleigh fading environment.
In such an H-RAN network, the channel model consists of

small Rayleigh fading and large-scale path loss, thus the
received downlink power signal can be described as [10], [11]

P
UEj

i,j = hb,i,jP
SRUi
i,j dβi,j , (6)

where hb,i,j represents the channel coefficient for that partic-
ular link between SRUi and UEj , PSRU

i,j is the transmission
power, d indicates the distance between the transmitter SRUi

and UEj , and β refers to the path loss exponent.
The downlink power received by the UEj from the SRUi

on the beam bth at a given time t is defined as

PUE
i,j [t] = PSRU

i,j [t], |hi,j [t]fj [t]|2 , (7)

where PSRU
i,j [t] represents the transmitted power, fj is the

directional beamforming, and hi,j [t] indicates the channel
matrix between SRUi and UEi.

According to the transmit power PSRU
i,j transmitted from

SRUi, we can estimate the received SINR for the UEj served
in SRUi with transmit power interference from SRUe at time
step t can be formulated as

SINRi[t] =
PSRU

i [t]|hℓ,i[t]fi[t]|2

σ2
n +

∑
e̸=i P

SRU
e [t]|hℓ,e[t]fe[t]|2

, (8)

where PSRU
i and PSRU

e correspond to SRUi and SRUe transmit
power, respectively. We monitor the change in SINRi as a
result of the change in the beamforming vector. This changes
according to the online report sensing environment. When
the beamforming vectors bth are selected for a given UEj

as specified in (3) [2], the H-DU also provides power control
of that selected beam by changing the transmit power of the
SRUi to this UEj according to UEj e.g., location, distance
and interference coordination with other SRUs.

As a result, the transmit power selection is governed by
the location and distance of the UEj relative to its associated
SRUi. Additionally, it accounts for interference coordination
considering the impact on and from adjacent SRUe. These
factors collectively guide the optimization process for trans-
mission settings, both of which are defined as [9]–[11]

PSRU
i,j [t] = min(PSRU

max,P
SRU
i [t− 1] + ρi[t]),

PSRU
e,j [t] = min(PSRU

max,P
SRU
e [t− 1] + κe[t]), (9)

where PSRU
max indicates the max transmit power, P SRU

i , and
PSRU

e are the actual transmit power for text SRUi, and SRUe,
respectively. ρi represents the power control for the serving
SRUi and κe denotes the interference coordination on the
interfering SRUe.

IV. DISTANCE-BASED INTERFERENCE MITIGATION

In a dense H-RAN, a user receives not only the signal
from the associated SRU but also the interference signal from
other SRUs and the noise from the environment. Therefore,
the associated H-DU can determine the distance between the
UEj and the SRUi as well as the overlapping SRUs. It can
also calculate the interference level, and determine the RSSI
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required to meet the minimum RSSI threshold allocated to the
UEj . Thus, the AI/ML D-engine in H-DU can take several
actions to avoid interference (e.g., reduce the transmission
signal power according to distance, frequency switching, and
SRU switching). Among the solutions proposed, we focus
only on reducing interference through adaptive control of
transmitted signal strength based on location and distance.
The achievable downlink transmission rate of a link can be
determined by the SINR of the current network status. Taking
into account that the channel coefficient only reflects path loss,
when UEj is associated with SRUi, the associated SINR can
be expressed as

SINRi,j =
Pid

−β
ij

γ−i
j + (σ2

n)
i
, (10)

We assume that the path loss depends on the Euclidean
distance between SRUi and UEj , where Pi is the transmit
power of SRUi, d

−β
ij indicates the free space path loss factor

between SRUi to UEj , where dij represents the Euclidean
distance between SRUi and UEj and β represents the path
loss. γ−i

j refers to the cumulative interference power received
from nearby SRUs within its range, and (σ2

n)
i refers to the

power of additive Gaussian noise in the environment.
According to [7]–[10] SINR can be influenced by the

received signal strength indicator RSSI and channel separation.
However, a high RSSI doesn’t guarantee a good SINR if
interference or noise levels are also high. Therefore, the
appropriate RSSI for a given distance with increasing channel
separation can reduce interference from neighboring channels
or beams. The SINR as a function of RSSI and distance can
be formulated as

SINRi,j =DRSSI + 10 log d−β
ij

− 10 log




N
x=1,x ̸=i

∆(ai, ax)d
−β
ij


− ω

, (11)

where DRSSI refers to the difference of RSSI received from the
user from its associated SRUi and interference SRUs based on
the change in dij distance between SRUi and UEj , and the
path loss β [9]–[11]. ∆(ai, ax) indicates the change in channel
allocation, and ω = 10 lg


1 + σn2

Ij−i


denotes the additive noise

to the cumulative interference power it receives from other
SRUs in its range.

According to the sensing information, if the distance from
UEj to SRUi is less than the coverage radius of SRUi, they
are presumed to be associated together. Whenever UEj is
associated with SRUi the H-DU adapts the allocated trans-
mitted power based on the distance between the two parties.
Therefore, without interference from other SRUe, the received
signal is only influenced by noise from the environment and
distance attenuation between the user and the SRUi. If two

SRU coverage areas overlap, then the Euclidean distance
between the two SRUs, SRUi and SRUe is given by.

d (SRUi, SRUe) =


(xi

a − xe
a)

2
+

�
yik − yek

2
, (12)

where xk and yk correspond to the abscissa and ordinate of the
SRUe, respectively. The adjacency relationship between SRUi

and SRUe can be expressed as a function of the effective cover-
age radius Ci, Ce, respectively by d (SRUi, SRUx) < Ci+Ce.
Therefore, if SRUi and SRUe are considered overlapping
coverage areas, then the value of ψi,j is set to (1), otherwise
(0), which indicates the associated relationship between SRUi,
and UEj .

Thus, the achievable downlink transmission rate of UEj can
be calculated as [9]–[11]

Cmax,ij = ψi,jBlog2(1 + SINRi,j), (13)

Let assume ξ−i
j as the inter-SRUs interference signal that

UEj receives from surrounding SRUs except for the currently
associated SRUi. Furthermore, ξnj indicates the same channel
interference that received by UEj from the SRUs which is
adjacent to SRUi. Accordingly, the total interference received
by UEj from all adjacent SRUs can be characterized as

ξej =
n

n=1,n̸=i

{ain∆(ri, re)Pngnj}, (14)

where ∆(ri, re) describes the channel relationship between
SRUi and SRUe . If ri = re, which implies that SRUi and
SRUe occupy the same channel, then ∆(ri, rx) is set to (1),
otherwise (0).

A. C-SMTL-Based Power Control And Interference Coordina-
tion

Figure 3: Structure of the deep Q-network-based AI/ML D-
engine.

To minimize the computational complexity of the adaptive
power control approach, we introduce AI/ML D-engine-based
deep reinforcement learning (DRL) to optimize adaptive power
control in dense H-RANs and obtain the most efficient joint
optimization approach through training to learn the mapping
between system inputs and optimal decisions. By implement-
ing an event-driven mechanism of Q-learning, our approach
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effectively reduces the complexity of online learning in dy-
namic network environments while enabling adaptive decision-
making. This approach facilitates the ability to respond to
changing network conditions in real time. As a result of
the offline strategy adjustment, s is the ability to respond to
changing network conditions in real-time.

As shown in Fig. 3, the SRUs estimate the user’s location
and distance. The H-DU uses this information to choose
the appropriate beamforming vector and then determines the
strength of the transmitted signal power based on the location,
distance, and interference with adjacent SRUs. As shown in
Fig. 3, in the AI/ML D-engine the the deep-network Qπ(δ, a)
is updated every time step, we formulate the state-action value
function derived from the deep-network as

Q⋆
π(δt, at) = Eδ′

[
rδ + SINRtar[t] max

a′
Q⋆

π(δ
′, a′)

∣∣∣∣ δt, at
]
,

(16)

where δ is the discretization of the observations at time t
e.g. location, distance, inter-cellular interference, inter-beam
interference. A policy π(·) provides a mapping between the
state of the environment δ and the action at ∈ A to be taken
by the AI/ML D-engine to assess the impact on effective target
SINRtarget [t] of the downlink transmission.

V. RESULTS AND DISCUSSION

Figure 4: Interference
level as a function of
users.

Figure 5: Average
throughput as a function
of users.

In this section, we run computer simulations to evaluate the
performance of the proposed model under different settings,
e.g., ViWi dataset, InSite ray-tracing software, and a Python
programming platform. For model training and evaluation,
OpenAI Gym serves as the environment template, integrated
with Python TensorFlow.

Fig. 4 demonstrates that for four access points (APs) as
the number of users increases, adjacent channel interference
between APs increases. As can be seen from the results, the H-
RAN algorithm is obviously superior to the ACPA algorithm
[8]. The simulation results demonstrate a reduction in interfer-
ence levels by 90% in our proposed algorithm. According to
distance information, the SRU’s transmit power is dynamically
adjusted to optimize the received signal strength at the UEj

while minimizing interference with neighboring SRUs.
Fig. 5 shows the results for throughput as a function of UEs

in the high interference scenario. When UEs are in a region

of high interference, H-RAN achieves better performance
compared to traditional ACPA schemes. This is because H-
RAN-based adaptive power control continuously monitors the
distance between the SRUi and the UEj . Accordingly, the
/textSRU i transmit power is dynamically adjusted based on
distance. This helps to prevent excessive interference by re-
ducing the likelihood of interference from neighboring SRUs.

VI. CONCLUSIONS AND FUTURE WORKS.
To address power consumption and optimize interference

in dense H-RANs, we propose a novel dynamic transmission
power control strategy for SRUs. This approach leverages real-
time sensor data and communication parameters to maintain
the desired received signal strength while minimizing interfer-
ence. We frame this interference optimization challenge as a
mixed-integer nonlinear programming problem. The C-SMTL
plays a pivotal role in learning, collaborating, and adapting
transmission power and interference coordination strategies
over time. Simulation results underscore H-RAN’s capability
to manage these conflicting objectives effectively, demonstrat-
ing significant network performance improvements. Future
research will concentrate on dynamic frequency-switching
strategies.
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